Cargando…
Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging
Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931855/ https://www.ncbi.nlm.nih.gov/pubmed/27060109 http://dx.doi.org/10.18632/aging.100924 |
_version_ | 1782440973162250240 |
---|---|
author | Cescon, Matilde Chen, Peiwen Castagnaro, Silvia Gregorio, Ilaria Bonaldo, Paolo |
author_facet | Cescon, Matilde Chen, Peiwen Castagnaro, Silvia Gregorio, Ilaria Bonaldo, Paolo |
author_sort | Cescon, Matilde |
collection | PubMed |
description | Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However, the physiological role of this protein in the central nervous system (CNS) remains unknown. Here, we established primary neural cultures from murine cortex and hippocampus, and carried out in vitro and in vivo studies in wild-type and collagen VI null (Col6a1(−/−)) mice. Col6a1(−/−) neural cultures displayed an increased incidence of spontaneous apoptosis and higher vulnerability to oxidative stress, accompanied by altered regulation of autophagy with increased p62 protein levels and decreased LC3 lipidation. Analysis of brain sections confirmed increased apoptosis and abnormal regulation of autophagy in the CNS of collagen VI-deficient animals. To investigate the in vivo physiological consequences of these CNS defects, we carried out functional studies and found that motor and memory task performances were impaired in aged Col6a1(−/−) mice. These findings indicate that lack of collagen VI leads to spontaneous apoptosis and defective autophagy in neural cells, and point at a protective role for this ECM protein in the CNS during physiological aging. |
format | Online Article Text |
id | pubmed-4931855 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-49318552016-07-18 Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging Cescon, Matilde Chen, Peiwen Castagnaro, Silvia Gregorio, Ilaria Bonaldo, Paolo Aging (Albany NY) Research Paper Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However, the physiological role of this protein in the central nervous system (CNS) remains unknown. Here, we established primary neural cultures from murine cortex and hippocampus, and carried out in vitro and in vivo studies in wild-type and collagen VI null (Col6a1(−/−)) mice. Col6a1(−/−) neural cultures displayed an increased incidence of spontaneous apoptosis and higher vulnerability to oxidative stress, accompanied by altered regulation of autophagy with increased p62 protein levels and decreased LC3 lipidation. Analysis of brain sections confirmed increased apoptosis and abnormal regulation of autophagy in the CNS of collagen VI-deficient animals. To investigate the in vivo physiological consequences of these CNS defects, we carried out functional studies and found that motor and memory task performances were impaired in aged Col6a1(−/−) mice. These findings indicate that lack of collagen VI leads to spontaneous apoptosis and defective autophagy in neural cells, and point at a protective role for this ECM protein in the CNS during physiological aging. Impact Journals LLC 2016-04-07 /pmc/articles/PMC4931855/ /pubmed/27060109 http://dx.doi.org/10.18632/aging.100924 Text en Copyright: © 2016 Cescon et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Cescon, Matilde Chen, Peiwen Castagnaro, Silvia Gregorio, Ilaria Bonaldo, Paolo Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging |
title | Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging |
title_full | Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging |
title_fullStr | Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging |
title_full_unstemmed | Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging |
title_short | Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging |
title_sort | lack of collagen vi promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931855/ https://www.ncbi.nlm.nih.gov/pubmed/27060109 http://dx.doi.org/10.18632/aging.100924 |
work_keys_str_mv | AT cesconmatilde lackofcollagenvipromotesneurodegenerationbyimpairingautophagyandinducingapoptosisduringaging AT chenpeiwen lackofcollagenvipromotesneurodegenerationbyimpairingautophagyandinducingapoptosisduringaging AT castagnarosilvia lackofcollagenvipromotesneurodegenerationbyimpairingautophagyandinducingapoptosisduringaging AT gregorioilaria lackofcollagenvipromotesneurodegenerationbyimpairingautophagyandinducingapoptosisduringaging AT bonaldopaolo lackofcollagenvipromotesneurodegenerationbyimpairingautophagyandinducingapoptosisduringaging |