Cargando…
Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR
BACKGROUND: After transformation, plants that are homozygous and contain one copy of the transgene are typically selected for further study. If real-time PCR is to be used to determine copy number and zygosity, it must be able to distinguish hemizygous from homozygous and one-copy from two-copy plan...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC493272/ https://www.ncbi.nlm.nih.gov/pubmed/15251044 http://dx.doi.org/10.1186/1472-6750-4-14 |
Sumario: | BACKGROUND: After transformation, plants that are homozygous and contain one copy of the transgene are typically selected for further study. If real-time PCR is to be used to determine copy number and zygosity, it must be able to distinguish hemizygous from homozygous and one-copy from two-copy plants. That is, it must be able to detect two-fold differences. RESULTS: When transgenic Nicotiana attenuata plants which had been previously determined by Southern analysis to contain one or two copies of the transgene, were analyzed by real-time PCR (2(-ΔΔCt )method), the method failed to confirm the results from the Southern analysis. In a second data set we analyzed offspring of a hemizygous one-copy plant, which were expected to segregate into three groups of offspring in a 1:2:1 ratio: no transgene, hemizygous, homozygous. Because it was not possible to distinguish homozygous from hemizygous plants with real-time PCR, we could not verify this segregation ratio. CONCLUSIONS: Detection of two-fold differences by real-time PCR is essential if this procedure is to be used for the characterization of transgenic plants. However, given the high variability between replicates, a detection of two-fold differences is in many cases not possible; in such cases Southern analysis is the more reliable procedure. |
---|