Cargando…

Destabilizing an interacting motif strengthens the association of a designed ankyrin repeat protein with tubulin

Affinity maturation by random mutagenesis and selection is an established technique to make binding molecules more suitable for applications in biomedical research, diagnostics and therapy. Here we identified an unexpected novel mechanism of affinity increase upon in vitro evolution of a tubulin-spe...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Shoeb, Pecqueur, Ludovic, Dreier, Birgit, Hamdane, Djemel, Aumont-Nicaise, Magali, Plückthun, Andreas, Knossow, Marcel, Gigant, Benoît
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933879/
https://www.ncbi.nlm.nih.gov/pubmed/27380724
http://dx.doi.org/10.1038/srep28922
Descripción
Sumario:Affinity maturation by random mutagenesis and selection is an established technique to make binding molecules more suitable for applications in biomedical research, diagnostics and therapy. Here we identified an unexpected novel mechanism of affinity increase upon in vitro evolution of a tubulin-specific designed ankyrin repeat protein (DARPin). Structural analysis indicated that in the progenitor DARPin the C-terminal capping repeat (C-cap) undergoes a 25° rotation to avoid a clash with tubulin upon binding. Additionally, the C-cap appears to be involved in electrostatic repulsion with tubulin. Biochemical and structural characterizations demonstrated that the evolved mutants achieved a gain in affinity through destabilization of the C-cap, which relieves the need of a DARPin conformational change upon tubulin binding and removes unfavorable interactions in the complex. Therefore, this specific case of an order-to-disorder transition led to a 100-fold tighter complex with a subnanomolar equilibrium dissociation constant, remarkably associated with a 30% decrease of the binding surface.