Cargando…

High‐Fat‐Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer's Disease, Independently of Metabolic Disorders

BACKGROUND: The high‐fat Western diet is postulated to be associated with the onset and progression of Alzheimer's disease (AD). However, the role of high‐fat‐diet consumption in AD pathology is unknown. This study was undertaken to examine the role of high‐fat‐diet intake in AD. METHODS AND RE...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Bowen, Hasegawa, Yu, Takane, Koki, Koibuchi, Nobutaka, Cao, Cheng, Kim‐Mitsuyama, Shokei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937262/
https://www.ncbi.nlm.nih.gov/pubmed/27412896
http://dx.doi.org/10.1161/JAHA.115.003154
_version_ 1782441677543178240
author Lin, Bowen
Hasegawa, Yu
Takane, Koki
Koibuchi, Nobutaka
Cao, Cheng
Kim‐Mitsuyama, Shokei
author_facet Lin, Bowen
Hasegawa, Yu
Takane, Koki
Koibuchi, Nobutaka
Cao, Cheng
Kim‐Mitsuyama, Shokei
author_sort Lin, Bowen
collection PubMed
description BACKGROUND: The high‐fat Western diet is postulated to be associated with the onset and progression of Alzheimer's disease (AD). However, the role of high‐fat‐diet consumption in AD pathology is unknown. This study was undertaken to examine the role of high‐fat‐diet intake in AD. METHODS AND RESULTS: 5XFAD mice, a useful mouse model of AD, and control wild‐type mice were fed (1) high‐fat diet or (2) control diet for 10 weeks. The effects on cerebral AD pathology, cognitive function, and metabolic parameters were compared between each group of mice. High‐fat diet significantly enhanced cerebrovascular β‐amyloid (Aβ) deposition (P<0.05) and impaired cognitive function (P<0.05) in 5XFAD mice, but not in wild‐type mice. High‐fat diet enhanced hippocampal oxidative stress (P<0.05) and NADPH oxidase subunits, gp91(phox) (P<0.01) and p22(phox) (P<0.01) in 5XFAD mice, but not in wild‐type mice. Furthermore, high‐fat diet reduced cerebral occludin (P<0.05) in 5XFAD mice, but not in wild‐type mice. Thus, 5XFAD mice exhibited greater susceptibility to high‐fat diet than wild‐type mice regarding cerebrovascular injury and cognitive impairment. On the other hand, 5XFAD mice fed high‐fat diet exhibited much less increase in body weight, white adipose tissue weight, and adipocyte size than their wild‐type counterparts. High‐fat diet significantly impaired glucose tolerance in wild‐type mice but not in 5XFAD mice. Thus, 5XFAD mice had much less susceptibility to high‐fat‐diet‐induced metabolic disorders than wild‐type mice. CONCLUSIONS: High‐fat diet, independently of metabolic disorders, significantly promotes the progression of AD‐like pathology through enhancement of cerebral amyloid angiopathy and oxidative stress.
format Online
Article
Text
id pubmed-4937262
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-49372622016-07-18 High‐Fat‐Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer's Disease, Independently of Metabolic Disorders Lin, Bowen Hasegawa, Yu Takane, Koki Koibuchi, Nobutaka Cao, Cheng Kim‐Mitsuyama, Shokei J Am Heart Assoc Original Research BACKGROUND: The high‐fat Western diet is postulated to be associated with the onset and progression of Alzheimer's disease (AD). However, the role of high‐fat‐diet consumption in AD pathology is unknown. This study was undertaken to examine the role of high‐fat‐diet intake in AD. METHODS AND RESULTS: 5XFAD mice, a useful mouse model of AD, and control wild‐type mice were fed (1) high‐fat diet or (2) control diet for 10 weeks. The effects on cerebral AD pathology, cognitive function, and metabolic parameters were compared between each group of mice. High‐fat diet significantly enhanced cerebrovascular β‐amyloid (Aβ) deposition (P<0.05) and impaired cognitive function (P<0.05) in 5XFAD mice, but not in wild‐type mice. High‐fat diet enhanced hippocampal oxidative stress (P<0.05) and NADPH oxidase subunits, gp91(phox) (P<0.01) and p22(phox) (P<0.01) in 5XFAD mice, but not in wild‐type mice. Furthermore, high‐fat diet reduced cerebral occludin (P<0.05) in 5XFAD mice, but not in wild‐type mice. Thus, 5XFAD mice exhibited greater susceptibility to high‐fat diet than wild‐type mice regarding cerebrovascular injury and cognitive impairment. On the other hand, 5XFAD mice fed high‐fat diet exhibited much less increase in body weight, white adipose tissue weight, and adipocyte size than their wild‐type counterparts. High‐fat diet significantly impaired glucose tolerance in wild‐type mice but not in 5XFAD mice. Thus, 5XFAD mice had much less susceptibility to high‐fat‐diet‐induced metabolic disorders than wild‐type mice. CONCLUSIONS: High‐fat diet, independently of metabolic disorders, significantly promotes the progression of AD‐like pathology through enhancement of cerebral amyloid angiopathy and oxidative stress. John Wiley and Sons Inc. 2016-06-13 /pmc/articles/PMC4937262/ /pubmed/27412896 http://dx.doi.org/10.1161/JAHA.115.003154 Text en © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Research
Lin, Bowen
Hasegawa, Yu
Takane, Koki
Koibuchi, Nobutaka
Cao, Cheng
Kim‐Mitsuyama, Shokei
High‐Fat‐Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer's Disease, Independently of Metabolic Disorders
title High‐Fat‐Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer's Disease, Independently of Metabolic Disorders
title_full High‐Fat‐Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer's Disease, Independently of Metabolic Disorders
title_fullStr High‐Fat‐Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer's Disease, Independently of Metabolic Disorders
title_full_unstemmed High‐Fat‐Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer's Disease, Independently of Metabolic Disorders
title_short High‐Fat‐Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer's Disease, Independently of Metabolic Disorders
title_sort high‐fat‐diet intake enhances cerebral amyloid angiopathy and cognitive impairment in a mouse model of alzheimer's disease, independently of metabolic disorders
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937262/
https://www.ncbi.nlm.nih.gov/pubmed/27412896
http://dx.doi.org/10.1161/JAHA.115.003154
work_keys_str_mv AT linbowen highfatdietintakeenhancescerebralamyloidangiopathyandcognitiveimpairmentinamousemodelofalzheimersdiseaseindependentlyofmetabolicdisorders
AT hasegawayu highfatdietintakeenhancescerebralamyloidangiopathyandcognitiveimpairmentinamousemodelofalzheimersdiseaseindependentlyofmetabolicdisorders
AT takanekoki highfatdietintakeenhancescerebralamyloidangiopathyandcognitiveimpairmentinamousemodelofalzheimersdiseaseindependentlyofmetabolicdisorders
AT koibuchinobutaka highfatdietintakeenhancescerebralamyloidangiopathyandcognitiveimpairmentinamousemodelofalzheimersdiseaseindependentlyofmetabolicdisorders
AT caocheng highfatdietintakeenhancescerebralamyloidangiopathyandcognitiveimpairmentinamousemodelofalzheimersdiseaseindependentlyofmetabolicdisorders
AT kimmitsuyamashokei highfatdietintakeenhancescerebralamyloidangiopathyandcognitiveimpairmentinamousemodelofalzheimersdiseaseindependentlyofmetabolicdisorders