Cargando…
p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation
p85α is a regulatory subunit of phosphatidylinositol 3-kinase (PI3K) that is a key lipid enzyme for generating phosphatidylinositol 3, 4, 5-trisphosphate, and subsequently activates signaling that ultimately regulates cell cycle progression, cell growth, cytoskeletal changes, and cell migration. In...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941340/ https://www.ncbi.nlm.nih.gov/pubmed/26918608 http://dx.doi.org/10.18632/oncotarget.7674 |
_version_ | 1782442289829773312 |
---|---|
author | Xie, Qipeng Guo, Xirui Gu, Jiayan Zhang, Liping Jin, Honglei Huang, Haishan Li, Jingxia Huang, Chuanshu |
author_facet | Xie, Qipeng Guo, Xirui Gu, Jiayan Zhang, Liping Jin, Honglei Huang, Haishan Li, Jingxia Huang, Chuanshu |
author_sort | Xie, Qipeng |
collection | PubMed |
description | p85α is a regulatory subunit of phosphatidylinositol 3-kinase (PI3K) that is a key lipid enzyme for generating phosphatidylinositol 3, 4, 5-trisphosphate, and subsequently activates signaling that ultimately regulates cell cycle progression, cell growth, cytoskeletal changes, and cell migration. In addition to form a complex with the p110 catalytic subunit, p85α also exists as a monomeric form due to that there is a greater abundance of p85α than p110 in many cell types. Our previous studies have demonstrated that monomeric p85α exerts a pro-apoptotic role in UV response through induction of TNF-α gene expression in PI3K-independent manner. In current studies, we identified a novel biological function of p85α as a positive regulator of epidermal growth factor receptor (EGFR) expression and cell malignant transformation via nucleolin-dependent mechanism. Our results showed that p85α was crucial for EGFR and nucleolin expression and subsequently resulted in an increase of malignant cellular transformation by using both specific knockdown and deletion of p85α in its normal expressed cells. Mechanistic studies revealed that p85α upregulated EGFR protein expression mainly through stabilizing its mRNA, whereas nucleolin (NCL) was able to bind to egfr mRNA and increase its mRNA stability. Consistently, overexpression of NCL in p85α−/− cells restored EGFR mRNA stabilization, protein expression and cell malignant transformation. Moreover, we discovered that p85α upregulated NCL gene transcription via enhancing C-Jun activation. Collectively, our studies demonstrate a novel function of p85α as a positive regulator of EGFR mRNA stability and cell malignant transformation, providing a significant insight into the understanding of biomedical nature of p85α protein in mammalian cells and further supporting that p85α might be a potential target for cancer prevention and therapy. |
format | Online Article Text |
id | pubmed-4941340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-49413402016-07-19 p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation Xie, Qipeng Guo, Xirui Gu, Jiayan Zhang, Liping Jin, Honglei Huang, Haishan Li, Jingxia Huang, Chuanshu Oncotarget Research Paper p85α is a regulatory subunit of phosphatidylinositol 3-kinase (PI3K) that is a key lipid enzyme for generating phosphatidylinositol 3, 4, 5-trisphosphate, and subsequently activates signaling that ultimately regulates cell cycle progression, cell growth, cytoskeletal changes, and cell migration. In addition to form a complex with the p110 catalytic subunit, p85α also exists as a monomeric form due to that there is a greater abundance of p85α than p110 in many cell types. Our previous studies have demonstrated that monomeric p85α exerts a pro-apoptotic role in UV response through induction of TNF-α gene expression in PI3K-independent manner. In current studies, we identified a novel biological function of p85α as a positive regulator of epidermal growth factor receptor (EGFR) expression and cell malignant transformation via nucleolin-dependent mechanism. Our results showed that p85α was crucial for EGFR and nucleolin expression and subsequently resulted in an increase of malignant cellular transformation by using both specific knockdown and deletion of p85α in its normal expressed cells. Mechanistic studies revealed that p85α upregulated EGFR protein expression mainly through stabilizing its mRNA, whereas nucleolin (NCL) was able to bind to egfr mRNA and increase its mRNA stability. Consistently, overexpression of NCL in p85α−/− cells restored EGFR mRNA stabilization, protein expression and cell malignant transformation. Moreover, we discovered that p85α upregulated NCL gene transcription via enhancing C-Jun activation. Collectively, our studies demonstrate a novel function of p85α as a positive regulator of EGFR mRNA stability and cell malignant transformation, providing a significant insight into the understanding of biomedical nature of p85α protein in mammalian cells and further supporting that p85α might be a potential target for cancer prevention and therapy. Impact Journals LLC 2016-02-24 /pmc/articles/PMC4941340/ /pubmed/26918608 http://dx.doi.org/10.18632/oncotarget.7674 Text en Copyright: © 2016 Xie et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Xie, Qipeng Guo, Xirui Gu, Jiayan Zhang, Liping Jin, Honglei Huang, Haishan Li, Jingxia Huang, Chuanshu p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation |
title | p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation |
title_full | p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation |
title_fullStr | p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation |
title_full_unstemmed | p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation |
title_short | p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation |
title_sort | p85α promotes nucleolin transcription and subsequently enhances egfr mrna stability and egf-induced malignant cellular transformation |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941340/ https://www.ncbi.nlm.nih.gov/pubmed/26918608 http://dx.doi.org/10.18632/oncotarget.7674 |
work_keys_str_mv | AT xieqipeng p85apromotesnucleolintranscriptionandsubsequentlyenhancesegfrmrnastabilityandegfinducedmalignantcellulartransformation AT guoxirui p85apromotesnucleolintranscriptionandsubsequentlyenhancesegfrmrnastabilityandegfinducedmalignantcellulartransformation AT gujiayan p85apromotesnucleolintranscriptionandsubsequentlyenhancesegfrmrnastabilityandegfinducedmalignantcellulartransformation AT zhangliping p85apromotesnucleolintranscriptionandsubsequentlyenhancesegfrmrnastabilityandegfinducedmalignantcellulartransformation AT jinhonglei p85apromotesnucleolintranscriptionandsubsequentlyenhancesegfrmrnastabilityandegfinducedmalignantcellulartransformation AT huanghaishan p85apromotesnucleolintranscriptionandsubsequentlyenhancesegfrmrnastabilityandegfinducedmalignantcellulartransformation AT lijingxia p85apromotesnucleolintranscriptionandsubsequentlyenhancesegfrmrnastabilityandegfinducedmalignantcellulartransformation AT huangchuanshu p85apromotesnucleolintranscriptionandsubsequentlyenhancesegfrmrnastabilityandegfinducedmalignantcellulartransformation |