Cargando…
Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability
Lysine acetylation is an important epigenetic mark regulating gene transcription and chromatin structure. Acetylated lysine residues are specifically recognized by bromodomains, small protein interaction modules that read these modification in a sequence and acetylation dependent way regulating the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942050/ https://www.ncbi.nlm.nih.gov/pubmed/27403962 http://dx.doi.org/10.1371/journal.pone.0159180 |
_version_ | 1782442373299568640 |
---|---|
author | Lori, Laura Pasquo, Alessandra Lori, Clorinda Petrosino, Maria Chiaraluce, Roberta Tallant, Cynthia Knapp, Stefan Consalvi, Valerio |
author_facet | Lori, Laura Pasquo, Alessandra Lori, Clorinda Petrosino, Maria Chiaraluce, Roberta Tallant, Cynthia Knapp, Stefan Consalvi, Valerio |
author_sort | Lori, Laura |
collection | PubMed |
description | Lysine acetylation is an important epigenetic mark regulating gene transcription and chromatin structure. Acetylated lysine residues are specifically recognized by bromodomains, small protein interaction modules that read these modification in a sequence and acetylation dependent way regulating the recruitment of transcriptional regulators and chromatin remodelling enzymes to acetylated sites in chromatin. Recent studies revealed that bromodomains are highly druggable protein interaction domains resulting in the development of a large number of bromodomain inhibitors. BET bromodomain inhibitors received a lot of attention in the oncology field resulting in the rapid translation of early BET bromodomain inhibitors into clinical studies. Here we investigated the effects of mutations present as polymorphism or found in cancer on BET bromodomain function and stability and the influence of these mutants on inhibitor binding. We found that most BET missense mutations localize to peripheral residues in the two terminal helices. Crystal structures showed that the three dimensional structure is not compromised by these mutations but mutations located in close proximity to the acetyl-lysine binding site modulate acetyl-lysine and inhibitor binding. Most mutations affect significantly protein stability and tertiary structure in solution, suggesting new interactions and an alternative network of protein-protein interconnection as a consequence of single amino acid substitution. To our knowledge this is the first report studying the effect of mutations on bromodomain function and inhibitor binding. |
format | Online Article Text |
id | pubmed-4942050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49420502016-08-01 Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability Lori, Laura Pasquo, Alessandra Lori, Clorinda Petrosino, Maria Chiaraluce, Roberta Tallant, Cynthia Knapp, Stefan Consalvi, Valerio PLoS One Research Article Lysine acetylation is an important epigenetic mark regulating gene transcription and chromatin structure. Acetylated lysine residues are specifically recognized by bromodomains, small protein interaction modules that read these modification in a sequence and acetylation dependent way regulating the recruitment of transcriptional regulators and chromatin remodelling enzymes to acetylated sites in chromatin. Recent studies revealed that bromodomains are highly druggable protein interaction domains resulting in the development of a large number of bromodomain inhibitors. BET bromodomain inhibitors received a lot of attention in the oncology field resulting in the rapid translation of early BET bromodomain inhibitors into clinical studies. Here we investigated the effects of mutations present as polymorphism or found in cancer on BET bromodomain function and stability and the influence of these mutants on inhibitor binding. We found that most BET missense mutations localize to peripheral residues in the two terminal helices. Crystal structures showed that the three dimensional structure is not compromised by these mutations but mutations located in close proximity to the acetyl-lysine binding site modulate acetyl-lysine and inhibitor binding. Most mutations affect significantly protein stability and tertiary structure in solution, suggesting new interactions and an alternative network of protein-protein interconnection as a consequence of single amino acid substitution. To our knowledge this is the first report studying the effect of mutations on bromodomain function and inhibitor binding. Public Library of Science 2016-07-12 /pmc/articles/PMC4942050/ /pubmed/27403962 http://dx.doi.org/10.1371/journal.pone.0159180 Text en © 2016 Lori et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lori, Laura Pasquo, Alessandra Lori, Clorinda Petrosino, Maria Chiaraluce, Roberta Tallant, Cynthia Knapp, Stefan Consalvi, Valerio Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability |
title | Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability |
title_full | Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability |
title_fullStr | Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability |
title_full_unstemmed | Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability |
title_short | Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability |
title_sort | effect of bet missense mutations on bromodomain function, inhibitor binding and stability |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942050/ https://www.ncbi.nlm.nih.gov/pubmed/27403962 http://dx.doi.org/10.1371/journal.pone.0159180 |
work_keys_str_mv | AT lorilaura effectofbetmissensemutationsonbromodomainfunctioninhibitorbindingandstability AT pasquoalessandra effectofbetmissensemutationsonbromodomainfunctioninhibitorbindingandstability AT loriclorinda effectofbetmissensemutationsonbromodomainfunctioninhibitorbindingandstability AT petrosinomaria effectofbetmissensemutationsonbromodomainfunctioninhibitorbindingandstability AT chiaraluceroberta effectofbetmissensemutationsonbromodomainfunctioninhibitorbindingandstability AT tallantcynthia effectofbetmissensemutationsonbromodomainfunctioninhibitorbindingandstability AT knappstefan effectofbetmissensemutationsonbromodomainfunctioninhibitorbindingandstability AT consalvivalerio effectofbetmissensemutationsonbromodomainfunctioninhibitorbindingandstability |