Cargando…
Avidity characterization of genetically engineered T-cells with novel and established approaches
BACKGROUND: Adoptive transfer of genetically engineered autologous T-cells is becoming a successful therapy for cancer. The avidity of the engineered T-cells is of crucial importance for therapy success. We have in the past cloned a T-cell receptor (TCR) that recognizes an HLA-A2 (MHC class I)-restr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944473/ https://www.ncbi.nlm.nih.gov/pubmed/27411667 http://dx.doi.org/10.1186/s12865-016-0162-z |
Sumario: | BACKGROUND: Adoptive transfer of genetically engineered autologous T-cells is becoming a successful therapy for cancer. The avidity of the engineered T-cells is of crucial importance for therapy success. We have in the past cloned a T-cell receptor (TCR) that recognizes an HLA-A2 (MHC class I)-restricted peptide from the prostate and breast cancer- associated antigen TARP. Herein we perform a side-by-side comparison of the TARP-specific TCR (TARP-TCR) with a newly cloned TCR specific for an HLA-A2-restricted peptide from the cytomegalovirus (CMV) pp65 antigen. RESULTS: Both CD8(+) T-cells and CD4(+) T-cells transduced with the HLA-A2-restricted TARP-TCR could readily be detected by multimer analysis, indicating that the binding is rather strong, since binding occured also without the CD8 co-receptor of HLA-A2. Not surprisingly, the TARP-TCR, which is directed against a self-antigen, had weaker binding to the HLA-A2/peptide complex than the CMV pp65-specific TCR (pp65-TCR), which is directed against a viral epitope. Higher peptide concentrations were needed to achieve efficient cytokine release and killing of target cells when the TARP-TCR was used. We further introduce the LigandTracer technology to study cell-cell interactions in real time by evaluating the interaction between TCR-engineered T-cells and peptide-pulsed cancer cells. We were able to successfully detect TCR-engineered T-cell binding kinetics to the target cells. We also used the xCELLigence technology to analyzed cell growth of target cells to assess the killing potency of the TCR-engineered T-cells. T-cells transduced with the pp65 - TCR exhibited more pronounced cytotoxicity, being able to kill their targets at both lower effector to target ratios and lower peptide concentrations. CONCLUSION: The combination of binding assay with functional assays yields data suggesting that TARP-TCR-engineered T-cells bind to their target, but need more antigen stimulation compared to the pp65-TCR to achieve full effector response. Nonetheless, we believe that the TARP-TCR is an attractive candidate for immunotherapy development for prostate and/or breast cancer. |
---|