Cargando…

Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis

Professional phagocytes engulf microbial invaders into plasma membrane-derived phagosomes. These mature into microbicidal phagolysosomes, leading to killing of the ingested microbe. Phagosome maturation involves sequential fusion of the phagosome with early endosomes, late endosomes, and the main de...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeschke, Andreas, Haas, Albert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951175/
https://www.ncbi.nlm.nih.gov/pubmed/27489580
http://dx.doi.org/10.1080/19420889.2016.1174798
Descripción
Sumario:Professional phagocytes engulf microbial invaders into plasma membrane-derived phagosomes. These mature into microbicidal phagolysosomes, leading to killing of the ingested microbe. Phagosome maturation involves sequential fusion of the phagosome with early endosomes, late endosomes, and the main degradative compartments in cells, lysosomes. Some bacterial pathogens manipulate the phosphoinositide (PIP) composition of phagosome membranes and are not delivered to phagolysosomes, pointing at a role of PIPs in phagosome maturation. This hypothesis is supported by comprehensive microscopic studies. Recently, cell-free reconstitution of fusion between phagosomes and endo(lyso)somes identified phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol 3-phosphate [PI(3)P] as key regulators of phagolysosome biogenesis. Here, we describe the emerging roles of PIPs in phagosome maturation and we present tools to study PIP involvement in phagosome trafficking using intact cells or purified compartments.