Cargando…
Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response
Human cells respond to DNA damage by elevating sphingosine, a bioactive sphingolipid that induces programmed cell death (PCD) in response to various forms of stress, but its regulation and role in the DNA damage response remain obscure. Herein we demonstrate that DNA damage increases sphingosine lev...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951300/ https://www.ncbi.nlm.nih.gov/pubmed/26943039 http://dx.doi.org/10.18632/oncotarget.7825 |
_version_ | 1782443679497060352 |
---|---|
author | Xu, Ruijuan Wang, Kai Mileva, Izolda Hannun, Yusuf A. Obeid, Lina M. Mao, Cungui |
author_facet | Xu, Ruijuan Wang, Kai Mileva, Izolda Hannun, Yusuf A. Obeid, Lina M. Mao, Cungui |
author_sort | Xu, Ruijuan |
collection | PubMed |
description | Human cells respond to DNA damage by elevating sphingosine, a bioactive sphingolipid that induces programmed cell death (PCD) in response to various forms of stress, but its regulation and role in the DNA damage response remain obscure. Herein we demonstrate that DNA damage increases sphingosine levels in tumor cells by upregulating alkaline ceramidase 2 (ACER2) and that the upregulation of the ACER2/sphingosine pathway induces PCD in response to DNA damage by increasing the production of reactive oxygen species (ROS). Treatment with the DNA damaging agent doxorubicin increased both ACER2 expression and sphingosine levels in HCT116 cells in a dose-dependent manner. ACER2 overexpression increased sphingosine in HeLa cells whereas knocking down ACER2 inhibited the doxorubicin-induced increase in sphingosine in HCT116 cells, suggesting that DNA damage elevates sphingosine by upregulating ACER2. Knocking down ACER2 inhibited an increase in the apoptotic and necrotic cell population and the cleavage of poly ADP ribose polymerase (PARP) in HCT116 cells in response to doxorubicin as well as doxorubicin-induced release of lactate dehydrogenase (LDH) from these cells. Similar to treatment with doxorubicin, ACER2 overexpression induced an increase in the apoptotic and necrotic cell population and PARP cleavage in HeLa cells and LDH release from cells, suggesting that ACER2 upregulation mediates PCD in response to DNA damage through sphingosine. Mechanistic studies demonstrated that the upregulation of the ACER2/sphingosine pathway induces PCD by increasing ROS levels. Taken together, these results suggest that the ACER2/sphingosine pathway mediates PCD in response to DNA damage through ROS production. |
format | Online Article Text |
id | pubmed-4951300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-49513002016-07-21 Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response Xu, Ruijuan Wang, Kai Mileva, Izolda Hannun, Yusuf A. Obeid, Lina M. Mao, Cungui Oncotarget Research Paper Human cells respond to DNA damage by elevating sphingosine, a bioactive sphingolipid that induces programmed cell death (PCD) in response to various forms of stress, but its regulation and role in the DNA damage response remain obscure. Herein we demonstrate that DNA damage increases sphingosine levels in tumor cells by upregulating alkaline ceramidase 2 (ACER2) and that the upregulation of the ACER2/sphingosine pathway induces PCD in response to DNA damage by increasing the production of reactive oxygen species (ROS). Treatment with the DNA damaging agent doxorubicin increased both ACER2 expression and sphingosine levels in HCT116 cells in a dose-dependent manner. ACER2 overexpression increased sphingosine in HeLa cells whereas knocking down ACER2 inhibited the doxorubicin-induced increase in sphingosine in HCT116 cells, suggesting that DNA damage elevates sphingosine by upregulating ACER2. Knocking down ACER2 inhibited an increase in the apoptotic and necrotic cell population and the cleavage of poly ADP ribose polymerase (PARP) in HCT116 cells in response to doxorubicin as well as doxorubicin-induced release of lactate dehydrogenase (LDH) from these cells. Similar to treatment with doxorubicin, ACER2 overexpression induced an increase in the apoptotic and necrotic cell population and PARP cleavage in HeLa cells and LDH release from cells, suggesting that ACER2 upregulation mediates PCD in response to DNA damage through sphingosine. Mechanistic studies demonstrated that the upregulation of the ACER2/sphingosine pathway induces PCD by increasing ROS levels. Taken together, these results suggest that the ACER2/sphingosine pathway mediates PCD in response to DNA damage through ROS production. Impact Journals LLC 2016-03-01 /pmc/articles/PMC4951300/ /pubmed/26943039 http://dx.doi.org/10.18632/oncotarget.7825 Text en Copyright: © 2016 Xu et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Xu, Ruijuan Wang, Kai Mileva, Izolda Hannun, Yusuf A. Obeid, Lina M. Mao, Cungui Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response |
title | Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response |
title_full | Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response |
title_fullStr | Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response |
title_full_unstemmed | Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response |
title_short | Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response |
title_sort | alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the dna damage response |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951300/ https://www.ncbi.nlm.nih.gov/pubmed/26943039 http://dx.doi.org/10.18632/oncotarget.7825 |
work_keys_str_mv | AT xuruijuan alkalineceramidase2anditsbioactiveproductsphingosinearenovelregulatorsofthednadamageresponse AT wangkai alkalineceramidase2anditsbioactiveproductsphingosinearenovelregulatorsofthednadamageresponse AT milevaizolda alkalineceramidase2anditsbioactiveproductsphingosinearenovelregulatorsofthednadamageresponse AT hannunyusufa alkalineceramidase2anditsbioactiveproductsphingosinearenovelregulatorsofthednadamageresponse AT obeidlinam alkalineceramidase2anditsbioactiveproductsphingosinearenovelregulatorsofthednadamageresponse AT maocungui alkalineceramidase2anditsbioactiveproductsphingosinearenovelregulatorsofthednadamageresponse |