Cargando…
AprilTag array-aided extrinsic calibration of camera–laser multi-sensor system
This paper presents a new algorithm for extrinsically calibrating a multi-sensor system including multiple cameras and a 2D laser scanner. On the basis of the camera pose estimation using AprilTag, we design an AprilTag array as the calibration target and employ a nonlinear optimization to calculate...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960277/ https://www.ncbi.nlm.nih.gov/pubmed/27512645 http://dx.doi.org/10.1186/s40638-016-0044-0 |
Sumario: | This paper presents a new algorithm for extrinsically calibrating a multi-sensor system including multiple cameras and a 2D laser scanner. On the basis of the camera pose estimation using AprilTag, we design an AprilTag array as the calibration target and employ a nonlinear optimization to calculate the single-camera extrinsic parameters when multiple tags are in the field of view of the camera. The extrinsic parameters of camera–camera and laser–camera are then calibrated, respectively. A global optimization is finally used to refine all the extrinsic parameters by minimizing a re-projection error. This algorithm is adapted to the extrinsic calibration of multiple cameras even if there is non-overlapping field of view. For algorithm validation, we have built a micro-aerial vehicle platform with multi-sensor system to collect real data, and the experiment results confirmed that the proposed algorithm yields great performance. |
---|