Cargando…
Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field
Resolution enhancement in far-field photolithography is demonstrated using a plasmonic metamask in the proximity regime, in which Fresnel diffraction is dominant. The transverse magnetic component of the diffracted wave from the photomask, which reduces the pattern visibility and lowers the resoluti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960539/ https://www.ncbi.nlm.nih.gov/pubmed/27457127 http://dx.doi.org/10.1038/srep30476 |
_version_ | 1782444541034364928 |
---|---|
author | Baek, Seunghwa Kang, Gumin Kang, Min Lee, Chang-Won Kim, Kyoungsik |
author_facet | Baek, Seunghwa Kang, Gumin Kang, Min Lee, Chang-Won Kim, Kyoungsik |
author_sort | Baek, Seunghwa |
collection | PubMed |
description | Resolution enhancement in far-field photolithography is demonstrated using a plasmonic metamask in the proximity regime, in which Fresnel diffraction is dominant. The transverse magnetic component of the diffracted wave from the photomask, which reduces the pattern visibility and lowers the resolution, was successfully controlled by coupling with the anti-symmetric mode of the excited surface plasmon. We obtained a consistently finely-patterned photoresist surface at a distance of up to 15 μm from the mask surface for 3-μm-pitch slits because of conserved field visibility when propagating from the near-field to the proximity regime. We confirmed that sharp edge patterning is indeed possible when using a wafer-scale photomask in the proximity photolithography regime. Our plasmonic metamask method produces cost savings for ultra-large-scale high-density display fabrication by maintaining longer photomask lifetimes and by allowing sufficient tolerance for the distance between the photomask and the photoresist. |
format | Online Article Text |
id | pubmed-4960539 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49605392016-08-05 Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field Baek, Seunghwa Kang, Gumin Kang, Min Lee, Chang-Won Kim, Kyoungsik Sci Rep Article Resolution enhancement in far-field photolithography is demonstrated using a plasmonic metamask in the proximity regime, in which Fresnel diffraction is dominant. The transverse magnetic component of the diffracted wave from the photomask, which reduces the pattern visibility and lowers the resolution, was successfully controlled by coupling with the anti-symmetric mode of the excited surface plasmon. We obtained a consistently finely-patterned photoresist surface at a distance of up to 15 μm from the mask surface for 3-μm-pitch slits because of conserved field visibility when propagating from the near-field to the proximity regime. We confirmed that sharp edge patterning is indeed possible when using a wafer-scale photomask in the proximity photolithography regime. Our plasmonic metamask method produces cost savings for ultra-large-scale high-density display fabrication by maintaining longer photomask lifetimes and by allowing sufficient tolerance for the distance between the photomask and the photoresist. Nature Publishing Group 2016-07-26 /pmc/articles/PMC4960539/ /pubmed/27457127 http://dx.doi.org/10.1038/srep30476 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Baek, Seunghwa Kang, Gumin Kang, Min Lee, Chang-Won Kim, Kyoungsik Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field |
title | Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field |
title_full | Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field |
title_fullStr | Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field |
title_full_unstemmed | Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field |
title_short | Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field |
title_sort | resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960539/ https://www.ncbi.nlm.nih.gov/pubmed/27457127 http://dx.doi.org/10.1038/srep30476 |
work_keys_str_mv | AT baekseunghwa resolutionenhancementusingplasmonicmetamaskforwaferscalephotolithographyinthefarfield AT kanggumin resolutionenhancementusingplasmonicmetamaskforwaferscalephotolithographyinthefarfield AT kangmin resolutionenhancementusingplasmonicmetamaskforwaferscalephotolithographyinthefarfield AT leechangwon resolutionenhancementusingplasmonicmetamaskforwaferscalephotolithographyinthefarfield AT kimkyoungsik resolutionenhancementusingplasmonicmetamaskforwaferscalephotolithographyinthefarfield |