Cargando…
Hul5 HECT Ubiquitin Ligase Plays A Major Role in The Ubiquitylation and Turn Over of Cytosolic Misfolded Proteins
Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin proteasome system. Here, we use q...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961474/ https://www.ncbi.nlm.nih.gov/pubmed/21983566 http://dx.doi.org/10.1038/ncb2343 |
_version_ | 1782444680645967872 |
---|---|
author | Fang, Nancy N. Ng, Alex H.M. Measday, Vivien Mayor, Thibault |
author_facet | Fang, Nancy N. Ng, Alex H.M. Measday, Vivien Mayor, Thibault |
author_sort | Fang, Nancy N. |
collection | PubMed |
description | Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin proteasome system. Here, we use quantitative mass spectrometry to demonstrate that heat-shock triggers a large increase of ubiquitylation associated with misfolding of cytosolic proteins. We discover that the Hul5 HECT ubiquitin ligase participates in this heat-shock stress response. Hul5 is required to maintain cell fitness after heat-shock and to degrade short-lived misfolded proteins. In addition, localization of Hul5 in the cytoplasm is important for its quality control function. We identify potential Hul5 substrates in heat-shock and physiological conditions to reveal that Hul5 is required for ubiquitylation of low solubility cytosolic proteins including the Pin3 prion-like protein. These findings indicate that Hul5 is involved in a cytosolic protein quality control pathway that targets misfolded proteins for degradation. |
format | Online Article Text |
id | pubmed-4961474 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
record_format | MEDLINE/PubMed |
spelling | pubmed-49614742016-07-26 Hul5 HECT Ubiquitin Ligase Plays A Major Role in The Ubiquitylation and Turn Over of Cytosolic Misfolded Proteins Fang, Nancy N. Ng, Alex H.M. Measday, Vivien Mayor, Thibault Nat Cell Biol Article Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin proteasome system. Here, we use quantitative mass spectrometry to demonstrate that heat-shock triggers a large increase of ubiquitylation associated with misfolding of cytosolic proteins. We discover that the Hul5 HECT ubiquitin ligase participates in this heat-shock stress response. Hul5 is required to maintain cell fitness after heat-shock and to degrade short-lived misfolded proteins. In addition, localization of Hul5 in the cytoplasm is important for its quality control function. We identify potential Hul5 substrates in heat-shock and physiological conditions to reveal that Hul5 is required for ubiquitylation of low solubility cytosolic proteins including the Pin3 prion-like protein. These findings indicate that Hul5 is involved in a cytosolic protein quality control pathway that targets misfolded proteins for degradation. 2011-10-09 /pmc/articles/PMC4961474/ /pubmed/21983566 http://dx.doi.org/10.1038/ncb2343 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Fang, Nancy N. Ng, Alex H.M. Measday, Vivien Mayor, Thibault Hul5 HECT Ubiquitin Ligase Plays A Major Role in The Ubiquitylation and Turn Over of Cytosolic Misfolded Proteins |
title | Hul5 HECT Ubiquitin Ligase Plays A Major Role in The Ubiquitylation and Turn Over of Cytosolic Misfolded Proteins |
title_full | Hul5 HECT Ubiquitin Ligase Plays A Major Role in The Ubiquitylation and Turn Over of Cytosolic Misfolded Proteins |
title_fullStr | Hul5 HECT Ubiquitin Ligase Plays A Major Role in The Ubiquitylation and Turn Over of Cytosolic Misfolded Proteins |
title_full_unstemmed | Hul5 HECT Ubiquitin Ligase Plays A Major Role in The Ubiquitylation and Turn Over of Cytosolic Misfolded Proteins |
title_short | Hul5 HECT Ubiquitin Ligase Plays A Major Role in The Ubiquitylation and Turn Over of Cytosolic Misfolded Proteins |
title_sort | hul5 hect ubiquitin ligase plays a major role in the ubiquitylation and turn over of cytosolic misfolded proteins |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961474/ https://www.ncbi.nlm.nih.gov/pubmed/21983566 http://dx.doi.org/10.1038/ncb2343 |
work_keys_str_mv | AT fangnancyn hul5hectubiquitinligaseplaysamajorroleintheubiquitylationandturnoverofcytosolicmisfoldedproteins AT ngalexhm hul5hectubiquitinligaseplaysamajorroleintheubiquitylationandturnoverofcytosolicmisfoldedproteins AT measdayvivien hul5hectubiquitinligaseplaysamajorroleintheubiquitylationandturnoverofcytosolicmisfoldedproteins AT mayorthibault hul5hectubiquitinligaseplaysamajorroleintheubiquitylationandturnoverofcytosolicmisfoldedproteins |