Cargando…

Threshold Levels of Gfi1 Maintain E2A Activity for B Cell Commitment via Repression of Id1

A regulatory circuit that controls myeloid versus B lymphoid cell fate in hematopoietic progenitors has been proposed, in which a network of the transcription factors Egr1/2, Nab, Gfi1 and PU.1 forms the core element. Here we show that a direct link between Gfi1, the transcription factor E2A and its...

Descripción completa

Detalles Bibliográficos
Autores principales: Fraszczak, Jennifer, Helness, Anne, Chen, Riyan, Vadnais, Charles, Robert, François, Khandanpour, Cyrus, Möröy, Tarik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965025/
https://www.ncbi.nlm.nih.gov/pubmed/27467586
http://dx.doi.org/10.1371/journal.pone.0160344
Descripción
Sumario:A regulatory circuit that controls myeloid versus B lymphoid cell fate in hematopoietic progenitors has been proposed, in which a network of the transcription factors Egr1/2, Nab, Gfi1 and PU.1 forms the core element. Here we show that a direct link between Gfi1, the transcription factor E2A and its inhibitor Id1 is a critical element of this regulatory circuit. Our data suggest that a certain threshold of Gfi1 is required to gauge E2A activity by adjusting levels of Id1 in multipotent progenitors, which are the first bipotential myeloid/lymphoid-restricted progeny of hematopoietic stem cells. If Gfi1 levels are high, Id1 is repressed enabling E2A to activate a specific set of B lineage genes by binding to regulatory elements for example the IL7 receptor gene. If Gfi1 levels fall below a threshold, Id1 expression increases and renders E2A unable to function, which prevents hematopoietic progenitors from engaging along the B lymphoid lineage.