Cargando…

Learning temporal weights of clinical events using variable importance

BACKGROUND: Longitudinal data sources, such as electronic health records (EHRs), are very valuable for monitoring adverse drug events (ADEs). However, ADEs are heavily under-reported in EHRs. Using machine learning algorithms to automatically detect patients that should have had ADEs reported in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jing, Henriksson, Aron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965710/
https://www.ncbi.nlm.nih.gov/pubmed/27459993
http://dx.doi.org/10.1186/s12911-016-0311-6