Cargando…
Bimodal expression of PHO84 is modulated by early termination of antisense transcription
Many S. cerevisiae genes encode antisense transcripts some of which are unstable and degraded by the exosome component Rrp6. Loss of Rrp6 results in the accumulation of long PHO84 antisense RNAs and repression of sense transcription through PHO84 promoter deacetylation. We used single molecule resol...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972572/ https://www.ncbi.nlm.nih.gov/pubmed/23770821 http://dx.doi.org/10.1038/nsmb.2598 |
Sumario: | Many S. cerevisiae genes encode antisense transcripts some of which are unstable and degraded by the exosome component Rrp6. Loss of Rrp6 results in the accumulation of long PHO84 antisense RNAs and repression of sense transcription through PHO84 promoter deacetylation. We used single molecule resolution fluorescent in situ hybridization (smFISH) to investigate antisense-mediated transcription regulation. We show that PHO84 antisense RNA acts as a bimodal switch, where continuous low frequency antisense transcription represses sense expression within individual cells. Surprisingly, antisense RNAs do not accumulate at the PHO84 gene but are exported to the cytoplasm. Furthermore, loss of Rrp6, rather than stabilizing PHO84 antisense RNA, promotes antisense elongation by reducing its early transcription termination by Nrd1-Nab3-Sen1. These observations suggest that PHO84 silencing results from constant low frequency antisense transcription through the promoter rather than its static accumulation at the repressed gene. |
---|