Cargando…
Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches
Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradatio...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977102/ https://www.ncbi.nlm.nih.gov/pubmed/27536103 http://dx.doi.org/10.2147/IJN.S104623 |
_version_ | 1782446970261995520 |
---|---|
author | Madureira, Ana Raquel Nunes, Sara Campos, Débora A Fernandes, João C Marques, Cláudia Zuzarte, Monica Gullón, Beatriz Rodríguez-Alcalá, Luís M Calhau, Conceição Sarmento, Bruno Gomes, Ana Maria Pintado, Maria Manuela Reis, Flávio |
author_facet | Madureira, Ana Raquel Nunes, Sara Campos, Débora A Fernandes, João C Marques, Cláudia Zuzarte, Monica Gullón, Beatriz Rodríguez-Alcalá, Luís M Calhau, Conceição Sarmento, Bruno Gomes, Ana Maria Pintado, Maria Manuela Reis, Flávio |
author_sort | Madureira, Ana Raquel |
collection | PubMed |
description | Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradation. This study aims to characterize the safety profile of solid lipid nanoparticles produced with Witepsol and Carnauba waxes and loaded with RA, using in vitro and in vivo approaches, focused on genotoxicity and cytotoxicity assays, redox status markers, hematological and biochemical profile, liver and kidney function, gut bacterial microbiota, and fecal fatty acids composition. Free RA and sage extract, empty nanoparticles, or nanoparticles loaded with RA or sage extract (0.15 and 1.5 mg/mL) were evaluated for cell (lymphocytes) viability, necrosis and apoptosis, and antioxidant/prooxidant effects upon DNA. Wistar rats were orally treated for 14 days with vehicle (control) and with Witepsol or Carnauba nanoparticles loaded with RA at 1 and 10 mg/kg body weight/d. Blood, urine, feces, and several tissues were collected for analysis. Free and loaded RA, at 0.15 mg/mL, presented a safe profile, while genotoxic potential was found for the higher dose (1.5 mg/mL), mainly by necrosis. Our data suggest that both types of nanoparticles are safe when loaded with moderate concentrations of RA, without in vitro genotoxicity and cytotoxicity and with an in vivo safety profile in rats orally treated, thus opening new avenues for use in nutraceutical applications. |
format | Online Article Text |
id | pubmed-4977102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-49771022016-08-17 Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches Madureira, Ana Raquel Nunes, Sara Campos, Débora A Fernandes, João C Marques, Cláudia Zuzarte, Monica Gullón, Beatriz Rodríguez-Alcalá, Luís M Calhau, Conceição Sarmento, Bruno Gomes, Ana Maria Pintado, Maria Manuela Reis, Flávio Int J Nanomedicine Original Research Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradation. This study aims to characterize the safety profile of solid lipid nanoparticles produced with Witepsol and Carnauba waxes and loaded with RA, using in vitro and in vivo approaches, focused on genotoxicity and cytotoxicity assays, redox status markers, hematological and biochemical profile, liver and kidney function, gut bacterial microbiota, and fecal fatty acids composition. Free RA and sage extract, empty nanoparticles, or nanoparticles loaded with RA or sage extract (0.15 and 1.5 mg/mL) were evaluated for cell (lymphocytes) viability, necrosis and apoptosis, and antioxidant/prooxidant effects upon DNA. Wistar rats were orally treated for 14 days with vehicle (control) and with Witepsol or Carnauba nanoparticles loaded with RA at 1 and 10 mg/kg body weight/d. Blood, urine, feces, and several tissues were collected for analysis. Free and loaded RA, at 0.15 mg/mL, presented a safe profile, while genotoxic potential was found for the higher dose (1.5 mg/mL), mainly by necrosis. Our data suggest that both types of nanoparticles are safe when loaded with moderate concentrations of RA, without in vitro genotoxicity and cytotoxicity and with an in vivo safety profile in rats orally treated, thus opening new avenues for use in nutraceutical applications. Dove Medical Press 2016-08-04 /pmc/articles/PMC4977102/ /pubmed/27536103 http://dx.doi.org/10.2147/IJN.S104623 Text en © 2016 Madureira et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Madureira, Ana Raquel Nunes, Sara Campos, Débora A Fernandes, João C Marques, Cláudia Zuzarte, Monica Gullón, Beatriz Rodríguez-Alcalá, Luís M Calhau, Conceição Sarmento, Bruno Gomes, Ana Maria Pintado, Maria Manuela Reis, Flávio Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches |
title | Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches |
title_full | Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches |
title_fullStr | Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches |
title_full_unstemmed | Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches |
title_short | Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches |
title_sort | safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977102/ https://www.ncbi.nlm.nih.gov/pubmed/27536103 http://dx.doi.org/10.2147/IJN.S104623 |
work_keys_str_mv | AT madureiraanaraquel safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT nunessara safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT camposdeboraa safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT fernandesjoaoc safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT marquesclaudia safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT zuzartemonica safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT gullonbeatriz safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT rodriguezalcalaluism safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT calhauconceicao safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT sarmentobruno safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT gomesanamaria safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT pintadomariamanuela safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches AT reisflavio safetyprofileofsolidlipidnanoparticlesloadedwithrosmarinicacidfororaluseinvitroandanimalapproaches |