Cargando…

Cryptosporidium parvum rhomboid1 has an activity in microneme protein CpGP900 cleavage

BACKGROUND: Apicomplexan parasites actively release transmembrane (TM) adhesive proteins involved in host cell attachment and invasion. Rhomboids, a family of intramembrane serine proteases, cleave these secreted adhesive proteins within their TM domains as an essential step in completing the invasi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Mingying, Zhang, Xichen, Gong, Pengtao, Li, Jianhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977710/
https://www.ncbi.nlm.nih.gov/pubmed/27502595
http://dx.doi.org/10.1186/s13071-016-1728-6
Descripción
Sumario:BACKGROUND: Apicomplexan parasites actively release transmembrane (TM) adhesive proteins involved in host cell attachment and invasion. Rhomboids, a family of intramembrane serine proteases, cleave these secreted adhesive proteins within their TM domains as an essential step in completing the invasion process. In Cryptosporidium parvum, the activity of rhomboids in cleaving microneme proteins (MICs) has not been reported. In the present study, the interaction between C. parvum rhomboids (CpROM1 and CpROM4) and C. parvum microneme proteins (CpGP900 and CpTRAP-C1) was investigated using yeast two-hybrid assay and co-immunoprecipitation assays. RESULTS: Our study demonstrated that CpROM1 protein could interact with CpGP900 protein in co-transformed AH109 yeasts. Analysis of these proteins in co-transfected mammalian cells showed that the cleavage product of the CpGP900 protein was detected in the co-transfected cells. As control, CpGP900 only was transfected into cells and no cleavage was observed. The results suggested that CpGP900 protein was the substrate of CpROM1. Moreover, CpROM1 and CpROM4 could not cleave CpTRAP-C1 protein, which is the substrate of T. gondii rhomboid 2. CONCLUSIONS: Our results showed that CpROM1 is an active protease that is involved in microneme protein CpGP900 cleavage, which lay the foundation for further research on the mechanisms of C. parvum invasion.