Cargando…

Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency

Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment opti...

Descripción completa

Detalles Bibliográficos
Autores principales: Ehinger, Johannes K., Piel, Sarah, Ford, Rhonan, Karlsson, Michael, Sjövall, Fredrik, Frostner, Eleonor Åsander, Morota, Saori, Taylor, Robert W., Turnbull, Doug M., Cornell, Clive, Moss, Steven J., Metzsch, Carsten, Hansson, Magnus J., Fliri, Hans, Elmér, Eskil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980488/
https://www.ncbi.nlm.nih.gov/pubmed/27502960
http://dx.doi.org/10.1038/ncomms12317
_version_ 1782447463047626752
author Ehinger, Johannes K.
Piel, Sarah
Ford, Rhonan
Karlsson, Michael
Sjövall, Fredrik
Frostner, Eleonor Åsander
Morota, Saori
Taylor, Robert W.
Turnbull, Doug M.
Cornell, Clive
Moss, Steven J.
Metzsch, Carsten
Hansson, Magnus J.
Fliri, Hans
Elmér, Eskil
author_facet Ehinger, Johannes K.
Piel, Sarah
Ford, Rhonan
Karlsson, Michael
Sjövall, Fredrik
Frostner, Eleonor Åsander
Morota, Saori
Taylor, Robert W.
Turnbull, Doug M.
Cornell, Clive
Moss, Steven J.
Metzsch, Carsten
Hansson, Magnus J.
Fliri, Hans
Elmér, Eskil
author_sort Ehinger, Johannes K.
collection PubMed
description Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [(13)C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction.
format Online
Article
Text
id pubmed-4980488
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49804882016-08-12 Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency Ehinger, Johannes K. Piel, Sarah Ford, Rhonan Karlsson, Michael Sjövall, Fredrik Frostner, Eleonor Åsander Morota, Saori Taylor, Robert W. Turnbull, Doug M. Cornell, Clive Moss, Steven J. Metzsch, Carsten Hansson, Magnus J. Fliri, Hans Elmér, Eskil Nat Commun Article Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [(13)C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction. Nature Publishing Group 2016-08-09 /pmc/articles/PMC4980488/ /pubmed/27502960 http://dx.doi.org/10.1038/ncomms12317 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Ehinger, Johannes K.
Piel, Sarah
Ford, Rhonan
Karlsson, Michael
Sjövall, Fredrik
Frostner, Eleonor Åsander
Morota, Saori
Taylor, Robert W.
Turnbull, Doug M.
Cornell, Clive
Moss, Steven J.
Metzsch, Carsten
Hansson, Magnus J.
Fliri, Hans
Elmér, Eskil
Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency
title Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency
title_full Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency
title_fullStr Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency
title_full_unstemmed Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency
title_short Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency
title_sort cell-permeable succinate prodrugs bypass mitochondrial complex i deficiency
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980488/
https://www.ncbi.nlm.nih.gov/pubmed/27502960
http://dx.doi.org/10.1038/ncomms12317
work_keys_str_mv AT ehingerjohannesk cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT pielsarah cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT fordrhonan cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT karlssonmichael cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT sjovallfredrik cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT frostnereleonorasander cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT morotasaori cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT taylorrobertw cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT turnbulldougm cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT cornellclive cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT mossstevenj cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT metzschcarsten cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT hanssonmagnusj cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT flirihans cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency
AT elmereskil cellpermeablesuccinateprodrugsbypassmitochondrialcomplexideficiency