Cargando…
DHA but Not EPA Emulsions Preserve Neurological and Mitochondrial Function after Brain Hypoxia-Ischemia in Neonatal Mice
BACKGROUND AND PURPOSE: Treatment with triglyceride emulsions of docosahexaenoic acid (tri-DHA) protected neonatal mice against hypoxia-ischemia (HI) brain injury. The mechanism of this neuroprotection remains unclear. We hypothesized that administration of tri-DHA enriches HI-brains with DHA/DHA me...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981459/ https://www.ncbi.nlm.nih.gov/pubmed/27513579 http://dx.doi.org/10.1371/journal.pone.0160870 |
Sumario: | BACKGROUND AND PURPOSE: Treatment with triglyceride emulsions of docosahexaenoic acid (tri-DHA) protected neonatal mice against hypoxia-ischemia (HI) brain injury. The mechanism of this neuroprotection remains unclear. We hypothesized that administration of tri-DHA enriches HI-brains with DHA/DHA metabolites. This reduces Ca(2+)-induced mitochondrial membrane permeabilization and attenuates brain injury. METHODS: 10-day-old C57BL/6J mice following HI-brain injury received tri-DHA, tri-EPA or vehicle. At 4–5 hours of reperfusion, mitochondrial fatty acid composition and Ca(2+) buffering capacity were analyzed. At 24 hours and at 8–9 weeks of recovery, oxidative injury, neurofunctional and neuropathological outcomes were evaluated. In vitro, hyperoxia-induced mitochondrial generation of reactive oxygen species (ROS) and Ca(2+) buffering capacity were measured in the presence or absence of DHA or EPA. RESULTS: Only post-treatment with tri-DHA reduced oxidative damage and improved short- and long-term neurological outcomes. This was associated with increased content of DHA in brain mitochondria and DHA-derived bioactive metabolites in cerebral tissue. After tri-DHA administration HI mitochondria were resistant to Ca(2+)-induced membrane permeabilization. In vitro, hyperoxia increased mitochondrial ROS production and reduced Ca(2+) buffering capacity; DHA, but not EPA, significantly attenuated these effects of hyperoxia. CONCLUSIONS: Post-treatment with tri-DHA resulted in significant accumulation of DHA and DHA derived bioactive metabolites in the HI-brain. This was associated with improved mitochondrial tolerance to Ca(2+)-induced permeabilization, reduced oxidative brain injury and permanent neuroprotection. Interaction of DHA with mitochondria alters ROS release and improves Ca(2+) buffering capacity. This may account for neuroprotective action of post-HI administration of tri-DHA. |
---|