Cargando…
Flexible analysis of digital PCR experiments using generalized linear mixed models
The use of digital PCR for quantification of nucleic acids is rapidly growing. A major drawback remains the lack of flexible data analysis tools. Published analysis approaches are either tailored to specific problem settings or fail to take into account sources of variability. We propose the general...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983648/ https://www.ncbi.nlm.nih.gov/pubmed/27551671 http://dx.doi.org/10.1016/j.bdq.2016.06.001 |
_version_ | 1782447930847789056 |
---|---|
author | Vynck, Matthijs Vandesompele, Jo Nijs, Nele Menten, Björn De Ganck, Ariane Thas, Olivier |
author_facet | Vynck, Matthijs Vandesompele, Jo Nijs, Nele Menten, Björn De Ganck, Ariane Thas, Olivier |
author_sort | Vynck, Matthijs |
collection | PubMed |
description | The use of digital PCR for quantification of nucleic acids is rapidly growing. A major drawback remains the lack of flexible data analysis tools. Published analysis approaches are either tailored to specific problem settings or fail to take into account sources of variability. We propose the generalized linear mixed models framework as a flexible tool for analyzing a wide range of experiments. We also introduce a method for estimating reference gene stability to improve accuracy and precision of copy number and relative expression estimates. We demonstrate the usefulness of the methodology on a complex experimental setup. |
format | Online Article Text |
id | pubmed-4983648 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-49836482016-08-22 Flexible analysis of digital PCR experiments using generalized linear mixed models Vynck, Matthijs Vandesompele, Jo Nijs, Nele Menten, Björn De Ganck, Ariane Thas, Olivier Biomol Detect Quantif Research Paper The use of digital PCR for quantification of nucleic acids is rapidly growing. A major drawback remains the lack of flexible data analysis tools. Published analysis approaches are either tailored to specific problem settings or fail to take into account sources of variability. We propose the generalized linear mixed models framework as a flexible tool for analyzing a wide range of experiments. We also introduce a method for estimating reference gene stability to improve accuracy and precision of copy number and relative expression estimates. We demonstrate the usefulness of the methodology on a complex experimental setup. Elsevier 2016-06-24 /pmc/articles/PMC4983648/ /pubmed/27551671 http://dx.doi.org/10.1016/j.bdq.2016.06.001 Text en © 2016 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Vynck, Matthijs Vandesompele, Jo Nijs, Nele Menten, Björn De Ganck, Ariane Thas, Olivier Flexible analysis of digital PCR experiments using generalized linear mixed models |
title | Flexible analysis of digital PCR experiments using generalized linear mixed models |
title_full | Flexible analysis of digital PCR experiments using generalized linear mixed models |
title_fullStr | Flexible analysis of digital PCR experiments using generalized linear mixed models |
title_full_unstemmed | Flexible analysis of digital PCR experiments using generalized linear mixed models |
title_short | Flexible analysis of digital PCR experiments using generalized linear mixed models |
title_sort | flexible analysis of digital pcr experiments using generalized linear mixed models |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983648/ https://www.ncbi.nlm.nih.gov/pubmed/27551671 http://dx.doi.org/10.1016/j.bdq.2016.06.001 |
work_keys_str_mv | AT vynckmatthijs flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels AT vandesompelejo flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels AT nijsnele flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels AT mentenbjorn flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels AT deganckariane flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels AT thasolivier flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels |