Cargando…

Flexible analysis of digital PCR experiments using generalized linear mixed models

The use of digital PCR for quantification of nucleic acids is rapidly growing. A major drawback remains the lack of flexible data analysis tools. Published analysis approaches are either tailored to specific problem settings or fail to take into account sources of variability. We propose the general...

Descripción completa

Detalles Bibliográficos
Autores principales: Vynck, Matthijs, Vandesompele, Jo, Nijs, Nele, Menten, Björn, De Ganck, Ariane, Thas, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983648/
https://www.ncbi.nlm.nih.gov/pubmed/27551671
http://dx.doi.org/10.1016/j.bdq.2016.06.001
_version_ 1782447930847789056
author Vynck, Matthijs
Vandesompele, Jo
Nijs, Nele
Menten, Björn
De Ganck, Ariane
Thas, Olivier
author_facet Vynck, Matthijs
Vandesompele, Jo
Nijs, Nele
Menten, Björn
De Ganck, Ariane
Thas, Olivier
author_sort Vynck, Matthijs
collection PubMed
description The use of digital PCR for quantification of nucleic acids is rapidly growing. A major drawback remains the lack of flexible data analysis tools. Published analysis approaches are either tailored to specific problem settings or fail to take into account sources of variability. We propose the generalized linear mixed models framework as a flexible tool for analyzing a wide range of experiments. We also introduce a method for estimating reference gene stability to improve accuracy and precision of copy number and relative expression estimates. We demonstrate the usefulness of the methodology on a complex experimental setup.
format Online
Article
Text
id pubmed-4983648
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-49836482016-08-22 Flexible analysis of digital PCR experiments using generalized linear mixed models Vynck, Matthijs Vandesompele, Jo Nijs, Nele Menten, Björn De Ganck, Ariane Thas, Olivier Biomol Detect Quantif Research Paper The use of digital PCR for quantification of nucleic acids is rapidly growing. A major drawback remains the lack of flexible data analysis tools. Published analysis approaches are either tailored to specific problem settings or fail to take into account sources of variability. We propose the generalized linear mixed models framework as a flexible tool for analyzing a wide range of experiments. We also introduce a method for estimating reference gene stability to improve accuracy and precision of copy number and relative expression estimates. We demonstrate the usefulness of the methodology on a complex experimental setup. Elsevier 2016-06-24 /pmc/articles/PMC4983648/ /pubmed/27551671 http://dx.doi.org/10.1016/j.bdq.2016.06.001 Text en © 2016 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Vynck, Matthijs
Vandesompele, Jo
Nijs, Nele
Menten, Björn
De Ganck, Ariane
Thas, Olivier
Flexible analysis of digital PCR experiments using generalized linear mixed models
title Flexible analysis of digital PCR experiments using generalized linear mixed models
title_full Flexible analysis of digital PCR experiments using generalized linear mixed models
title_fullStr Flexible analysis of digital PCR experiments using generalized linear mixed models
title_full_unstemmed Flexible analysis of digital PCR experiments using generalized linear mixed models
title_short Flexible analysis of digital PCR experiments using generalized linear mixed models
title_sort flexible analysis of digital pcr experiments using generalized linear mixed models
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983648/
https://www.ncbi.nlm.nih.gov/pubmed/27551671
http://dx.doi.org/10.1016/j.bdq.2016.06.001
work_keys_str_mv AT vynckmatthijs flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels
AT vandesompelejo flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels
AT nijsnele flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels
AT mentenbjorn flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels
AT deganckariane flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels
AT thasolivier flexibleanalysisofdigitalpcrexperimentsusinggeneralizedlinearmixedmodels