Cargando…

De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data

Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of...

Descripción completa

Detalles Bibliográficos
Autores principales: Grün, Dominic, Muraro, Mauro J., Boisset, Jean-Charles, Wiebrands, Kay, Lyubimova, Anna, Dharmadhikari, Gitanjali, van den Born, Maaike, van Es, Johan, Jansen, Erik, Clevers, Hans, de Koning, Eelco J.P., van Oudenaarden, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985539/
https://www.ncbi.nlm.nih.gov/pubmed/27345837
http://dx.doi.org/10.1016/j.stem.2016.05.010
_version_ 1782448072511455232
author Grün, Dominic
Muraro, Mauro J.
Boisset, Jean-Charles
Wiebrands, Kay
Lyubimova, Anna
Dharmadhikari, Gitanjali
van den Born, Maaike
van Es, Johan
Jansen, Erik
Clevers, Hans
de Koning, Eelco J.P.
van Oudenaarden, Alexander
author_facet Grün, Dominic
Muraro, Mauro J.
Boisset, Jean-Charles
Wiebrands, Kay
Lyubimova, Anna
Dharmadhikari, Gitanjali
van den Born, Maaike
van Es, Johan
Jansen, Erik
Clevers, Hans
de Koning, Eelco J.P.
van Oudenaarden, Alexander
author_sort Grün, Dominic
collection PubMed
description Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation.
format Online
Article
Text
id pubmed-4985539
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-49855392016-08-22 De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data Grün, Dominic Muraro, Mauro J. Boisset, Jean-Charles Wiebrands, Kay Lyubimova, Anna Dharmadhikari, Gitanjali van den Born, Maaike van Es, Johan Jansen, Erik Clevers, Hans de Koning, Eelco J.P. van Oudenaarden, Alexander Cell Stem Cell Resource Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation. Cell Press 2016-08-04 /pmc/articles/PMC4985539/ /pubmed/27345837 http://dx.doi.org/10.1016/j.stem.2016.05.010 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Resource
Grün, Dominic
Muraro, Mauro J.
Boisset, Jean-Charles
Wiebrands, Kay
Lyubimova, Anna
Dharmadhikari, Gitanjali
van den Born, Maaike
van Es, Johan
Jansen, Erik
Clevers, Hans
de Koning, Eelco J.P.
van Oudenaarden, Alexander
De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data
title De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data
title_full De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data
title_fullStr De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data
title_full_unstemmed De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data
title_short De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data
title_sort de novo prediction of stem cell identity using single-cell transcriptome data
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985539/
https://www.ncbi.nlm.nih.gov/pubmed/27345837
http://dx.doi.org/10.1016/j.stem.2016.05.010
work_keys_str_mv AT grundominic denovopredictionofstemcellidentityusingsinglecelltranscriptomedata
AT muraromauroj denovopredictionofstemcellidentityusingsinglecelltranscriptomedata
AT boissetjeancharles denovopredictionofstemcellidentityusingsinglecelltranscriptomedata
AT wiebrandskay denovopredictionofstemcellidentityusingsinglecelltranscriptomedata
AT lyubimovaanna denovopredictionofstemcellidentityusingsinglecelltranscriptomedata
AT dharmadhikarigitanjali denovopredictionofstemcellidentityusingsinglecelltranscriptomedata
AT vandenbornmaaike denovopredictionofstemcellidentityusingsinglecelltranscriptomedata
AT vanesjohan denovopredictionofstemcellidentityusingsinglecelltranscriptomedata
AT jansenerik denovopredictionofstemcellidentityusingsinglecelltranscriptomedata
AT clevershans denovopredictionofstemcellidentityusingsinglecelltranscriptomedata
AT dekoningeelcojp denovopredictionofstemcellidentityusingsinglecelltranscriptomedata
AT vanoudenaardenalexander denovopredictionofstemcellidentityusingsinglecelltranscriptomedata