Cargando…
De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data
Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985539/ https://www.ncbi.nlm.nih.gov/pubmed/27345837 http://dx.doi.org/10.1016/j.stem.2016.05.010 |
_version_ | 1782448072511455232 |
---|---|
author | Grün, Dominic Muraro, Mauro J. Boisset, Jean-Charles Wiebrands, Kay Lyubimova, Anna Dharmadhikari, Gitanjali van den Born, Maaike van Es, Johan Jansen, Erik Clevers, Hans de Koning, Eelco J.P. van Oudenaarden, Alexander |
author_facet | Grün, Dominic Muraro, Mauro J. Boisset, Jean-Charles Wiebrands, Kay Lyubimova, Anna Dharmadhikari, Gitanjali van den Born, Maaike van Es, Johan Jansen, Erik Clevers, Hans de Koning, Eelco J.P. van Oudenaarden, Alexander |
author_sort | Grün, Dominic |
collection | PubMed |
description | Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation. |
format | Online Article Text |
id | pubmed-4985539 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-49855392016-08-22 De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data Grün, Dominic Muraro, Mauro J. Boisset, Jean-Charles Wiebrands, Kay Lyubimova, Anna Dharmadhikari, Gitanjali van den Born, Maaike van Es, Johan Jansen, Erik Clevers, Hans de Koning, Eelco J.P. van Oudenaarden, Alexander Cell Stem Cell Resource Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation. Cell Press 2016-08-04 /pmc/articles/PMC4985539/ /pubmed/27345837 http://dx.doi.org/10.1016/j.stem.2016.05.010 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Resource Grün, Dominic Muraro, Mauro J. Boisset, Jean-Charles Wiebrands, Kay Lyubimova, Anna Dharmadhikari, Gitanjali van den Born, Maaike van Es, Johan Jansen, Erik Clevers, Hans de Koning, Eelco J.P. van Oudenaarden, Alexander De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data |
title | De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data |
title_full | De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data |
title_fullStr | De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data |
title_full_unstemmed | De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data |
title_short | De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data |
title_sort | de novo prediction of stem cell identity using single-cell transcriptome data |
topic | Resource |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985539/ https://www.ncbi.nlm.nih.gov/pubmed/27345837 http://dx.doi.org/10.1016/j.stem.2016.05.010 |
work_keys_str_mv | AT grundominic denovopredictionofstemcellidentityusingsinglecelltranscriptomedata AT muraromauroj denovopredictionofstemcellidentityusingsinglecelltranscriptomedata AT boissetjeancharles denovopredictionofstemcellidentityusingsinglecelltranscriptomedata AT wiebrandskay denovopredictionofstemcellidentityusingsinglecelltranscriptomedata AT lyubimovaanna denovopredictionofstemcellidentityusingsinglecelltranscriptomedata AT dharmadhikarigitanjali denovopredictionofstemcellidentityusingsinglecelltranscriptomedata AT vandenbornmaaike denovopredictionofstemcellidentityusingsinglecelltranscriptomedata AT vanesjohan denovopredictionofstemcellidentityusingsinglecelltranscriptomedata AT jansenerik denovopredictionofstemcellidentityusingsinglecelltranscriptomedata AT clevershans denovopredictionofstemcellidentityusingsinglecelltranscriptomedata AT dekoningeelcojp denovopredictionofstemcellidentityusingsinglecelltranscriptomedata AT vanoudenaardenalexander denovopredictionofstemcellidentityusingsinglecelltranscriptomedata |