Cargando…

Quantification of mutant alleles in circulating tumor DNA can predict survival in lung cancer

PURPOSE: We aimed to investigate the feasibility of droplet digital PCR (ddPCR) for the quantitative and dynamic detection of EGFR mutations and next generation sequencing (NGS) for screening EGFR-tyrosine kinase inhibitors (EGFR-TKIs) resistance-relevant mutations in circulating tumor DNA (ctDNA) f...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xue, Zhuo, Minglei, Ye, Xin, Bai, Hua, Wang, Zhijie, Sun, Yun, Zhao, Jun, An, Tongtong, Duan, Jianchun, Wu, Meina, Wang, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991494/
https://www.ncbi.nlm.nih.gov/pubmed/26989078
http://dx.doi.org/10.18632/oncotarget.8021
Descripción
Sumario:PURPOSE: We aimed to investigate the feasibility of droplet digital PCR (ddPCR) for the quantitative and dynamic detection of EGFR mutations and next generation sequencing (NGS) for screening EGFR-tyrosine kinase inhibitors (EGFR-TKIs) resistance-relevant mutations in circulating tumor DNA (ctDNA) from advanced lung adenocarcinoma (ADC) patients. RESULTS: Detection limit of EGFR mutation in ctDNA by ddPCR was 0.04%. Taking the EGFR mutation in tumor tissue as the golden standard, the concordance of EGFR mutations detected in ctDNA was 74% (54/73). Patients with EGFR mutation in ctDNA (n = 54) superior progression-free survival (PFS, median, 12.6 vs. 6.7 months, P < 0.001) and overall survival (OS, median, 35.6 vs. 23.8 months, P = 0.028) compared to those with EGFR wild type in ctDNA (n = 19). Patients with high EGFR-mutated abundance in ctDNA (> 5.15%) showed better PFS compared to those with low EGFR mutated abundance (≤ 5.15%) (PFS, median, 15.4 vs. 11.1 months, P = 0.021). NGS results showed that 66.6% (8/12) total mutational copy number were elevated and 76.5% (26/34) mutual mutation frequency increased after disease progression. METHODS: Seventy-three advanced ADC patients with tumor tissues carrying EGFR mutations and their matched pre- and post-EGFR-TKIs plasma samples were enrolled in this study. Absolute quantities of plasma EGFR mutant and wild-type alleles were measured by ddPCR. Multi-genes testing was performed using NGS in 12 patients. CONCLUSIONS: Dynamic and quantitative analysis of EGFR mutation in ctDNA could guide personalized therapy for advanced ADC. NGS shows good performance in multiple genes testing especially novel and uncommon genes.