Cargando…

Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate

Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged...

Descripción completa

Detalles Bibliográficos
Autores principales: Vazquez-Martin, Alejandro, Van den Haute, Chris, Cufí, Sílvia, Corominas-Faja, Bruna, Cuyàs, Elisabet, Lopez-Bonet, Eugeni, Rodriguez-Gallego, Esther, Fernández-Arroyo, Salvador, Joven, Jorge, Baekelandt, Veerle, Menendez, Javier A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993334/
https://www.ncbi.nlm.nih.gov/pubmed/27295498
http://dx.doi.org/10.18632/aging.100976
_version_ 1782449134035271680
author Vazquez-Martin, Alejandro
Van den Haute, Chris
Cufí, Sílvia
Corominas-Faja, Bruna
Cuyàs, Elisabet
Lopez-Bonet, Eugeni
Rodriguez-Gallego, Esther
Fernández-Arroyo, Salvador
Joven, Jorge
Baekelandt, Veerle
Menendez, Javier A.
author_facet Vazquez-Martin, Alejandro
Van den Haute, Chris
Cufí, Sílvia
Corominas-Faja, Bruna
Cuyàs, Elisabet
Lopez-Bonet, Eugeni
Rodriguez-Gallego, Esther
Fernández-Arroyo, Salvador
Joven, Jorge
Baekelandt, Veerle
Menendez, Javier A.
author_sort Vazquez-Martin, Alejandro
collection PubMed
description Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts from PINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain pluripotency or differentiate in tissue regeneration and aging, tumor growth, and regenerative medicine.
format Online
Article
Text
id pubmed-4993334
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Impact Journals LLC
record_format MEDLINE/PubMed
spelling pubmed-49933342016-08-26 Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate Vazquez-Martin, Alejandro Van den Haute, Chris Cufí, Sílvia Corominas-Faja, Bruna Cuyàs, Elisabet Lopez-Bonet, Eugeni Rodriguez-Gallego, Esther Fernández-Arroyo, Salvador Joven, Jorge Baekelandt, Veerle Menendez, Javier A. Aging (Albany NY) Research Paper Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts from PINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain pluripotency or differentiate in tissue regeneration and aging, tumor growth, and regenerative medicine. Impact Journals LLC 2016-06-13 /pmc/articles/PMC4993334/ /pubmed/27295498 http://dx.doi.org/10.18632/aging.100976 Text en Copyright: © 2016 Vazquez-Martin et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Paper
Vazquez-Martin, Alejandro
Van den Haute, Chris
Cufí, Sílvia
Corominas-Faja, Bruna
Cuyàs, Elisabet
Lopez-Bonet, Eugeni
Rodriguez-Gallego, Esther
Fernández-Arroyo, Salvador
Joven, Jorge
Baekelandt, Veerle
Menendez, Javier A.
Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate
title Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate
title_full Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate
title_fullStr Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate
title_full_unstemmed Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate
title_short Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate
title_sort mitophagy-driven mitochondrial rejuvenation regulates stem cell fate
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993334/
https://www.ncbi.nlm.nih.gov/pubmed/27295498
http://dx.doi.org/10.18632/aging.100976
work_keys_str_mv AT vazquezmartinalejandro mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate
AT vandenhautechris mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate
AT cufisilvia mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate
AT corominasfajabruna mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate
AT cuyaselisabet mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate
AT lopezboneteugeni mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate
AT rodriguezgallegoesther mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate
AT fernandezarroyosalvador mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate
AT jovenjorge mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate
AT baekelandtveerle mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate
AT menendezjaviera mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate