Cargando…
Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate
Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993334/ https://www.ncbi.nlm.nih.gov/pubmed/27295498 http://dx.doi.org/10.18632/aging.100976 |
_version_ | 1782449134035271680 |
---|---|
author | Vazquez-Martin, Alejandro Van den Haute, Chris Cufí, Sílvia Corominas-Faja, Bruna Cuyàs, Elisabet Lopez-Bonet, Eugeni Rodriguez-Gallego, Esther Fernández-Arroyo, Salvador Joven, Jorge Baekelandt, Veerle Menendez, Javier A. |
author_facet | Vazquez-Martin, Alejandro Van den Haute, Chris Cufí, Sílvia Corominas-Faja, Bruna Cuyàs, Elisabet Lopez-Bonet, Eugeni Rodriguez-Gallego, Esther Fernández-Arroyo, Salvador Joven, Jorge Baekelandt, Veerle Menendez, Javier A. |
author_sort | Vazquez-Martin, Alejandro |
collection | PubMed |
description | Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts from PINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain pluripotency or differentiate in tissue regeneration and aging, tumor growth, and regenerative medicine. |
format | Online Article Text |
id | pubmed-4993334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-49933342016-08-26 Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate Vazquez-Martin, Alejandro Van den Haute, Chris Cufí, Sílvia Corominas-Faja, Bruna Cuyàs, Elisabet Lopez-Bonet, Eugeni Rodriguez-Gallego, Esther Fernández-Arroyo, Salvador Joven, Jorge Baekelandt, Veerle Menendez, Javier A. Aging (Albany NY) Research Paper Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts from PINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain pluripotency or differentiate in tissue regeneration and aging, tumor growth, and regenerative medicine. Impact Journals LLC 2016-06-13 /pmc/articles/PMC4993334/ /pubmed/27295498 http://dx.doi.org/10.18632/aging.100976 Text en Copyright: © 2016 Vazquez-Martin et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Vazquez-Martin, Alejandro Van den Haute, Chris Cufí, Sílvia Corominas-Faja, Bruna Cuyàs, Elisabet Lopez-Bonet, Eugeni Rodriguez-Gallego, Esther Fernández-Arroyo, Salvador Joven, Jorge Baekelandt, Veerle Menendez, Javier A. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate |
title | Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate |
title_full | Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate |
title_fullStr | Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate |
title_full_unstemmed | Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate |
title_short | Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate |
title_sort | mitophagy-driven mitochondrial rejuvenation regulates stem cell fate |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993334/ https://www.ncbi.nlm.nih.gov/pubmed/27295498 http://dx.doi.org/10.18632/aging.100976 |
work_keys_str_mv | AT vazquezmartinalejandro mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate AT vandenhautechris mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate AT cufisilvia mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate AT corominasfajabruna mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate AT cuyaselisabet mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate AT lopezboneteugeni mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate AT rodriguezgallegoesther mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate AT fernandezarroyosalvador mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate AT jovenjorge mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate AT baekelandtveerle mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate AT menendezjaviera mitophagydrivenmitochondrialrejuvenationregulatesstemcellfate |