Cargando…
Interpreting transcriptional changes using causal graphs: new methods and their practical utility on public networks
BACKGROUND: Inference of active regulatory cascades under specific molecular and environmental perturbations is a recurring task in transcriptional data analysis. Commercial tools based on large, manually curated networks of causal relationships offering such functionality have been used in thousand...
Autores principales: | Fakhry, Carl Tony, Choudhary, Parul, Gutteridge, Alex, Sidders, Ben, Chen, Ping, Ziemek, Daniel, Zarringhalam, Kourosh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995651/ https://www.ncbi.nlm.nih.gov/pubmed/27553489 http://dx.doi.org/10.1186/s12859-016-1181-8 |
Ejemplares similares
-
Robust clinical outcome prediction based on Bayesian analysis of transcriptional profiles and prior causal networks
por: Zarringhalam, Kourosh, et al.
Publicado: (2014) -
Prediction of bacterial small RNAs in the RsmA (CsrA) and ToxT pathways: a machine learning approach
por: Fakhry, Carl Tony, et al.
Publicado: (2017) -
Assessing statistical significance in causal graphs
por: Chindelevitch, Leonid, et al.
Publicado: (2012) -
Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes
por: Zarringhalam, Kourosh, et al.
Publicado: (2018) -
A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data
por: Kang, Tianyu, et al.
Publicado: (2017)