Cargando…
Valproic acid induces autophagy by suppressing the Akt/mTOR pathway in human prostate cancer cells
Previous studies have demonstrated that the chronic administration of valproic acid (VPA) suppresses angiogenesis in vivo; however, the mechanisms implicated in VPA-induced autophagy remain unclear. The current study aimed to assess VPA-induced autophagy in three prostate cancer cell lines (PC3, DU1...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998110/ https://www.ncbi.nlm.nih.gov/pubmed/27588130 http://dx.doi.org/10.3892/ol.2016.4880 |
Sumario: | Previous studies have demonstrated that the chronic administration of valproic acid (VPA) suppresses angiogenesis in vivo; however, the mechanisms implicated in VPA-induced autophagy remain unclear. The current study aimed to assess VPA-induced autophagy in three prostate cancer cell lines (PC3, DU145 and LNCaP), in addition to analyzing the Akt/mammalian target of rapamycin (mTOR) signal pathway. Prostate cancer cell lines were cultured with various doses of VPA. Cell cycle was analyzed using flow cytometry, and autophagy markers [1A/1B-light chain 3 (LC3)-II and Beclin-1] were examined using transmission electron microscopy, fluorescent microscopy and western blotting. Activation of the Akt/mTOR signal pathway was also assessed by western blotting. The results demonstrated that VPA induced autophagosomes and suppressed the Akt/mTOR signal pathway. This was confirmed by detection of increased LC3-II and Beclin-1 in VPA-treated cells compared with untreated controls. Phosphorylated forms of Akt (PC3, P=0.048; DU145, P=0.045; LNCaP, P=0.039) and mTOR (PC3, P=0.012; DU145, P=0.41; LNCaP, P=0.35) were significantly reduced following VPA treatment. These results suggest that VPA may function as a histone deacetylase inhibitor, suppressing the growth of prostate cancer cells by modulating autophagy pathways, including inhibition of the Akt/mTOR pathway. Further experiments are required to determine the significance of all involved pathways regarding VPA-induced growth inhibition. |
---|