Cargando…
Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model
BACKGROUND: Accurate identification of differentially expressed (DE) genes in time course RNA-Seq data is crucial for understanding the dynamics of transcriptional regulatory network. However, most of the available methods treat gene expressions at different time points as replicates and test the si...
Autores principales: | Sun, Xiaoxiao, Dalpiaz, David, Wu, Di, S. Liu, Jun, Zhong, Wenxuan, Ma, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002174/ https://www.ncbi.nlm.nih.gov/pubmed/27565575 http://dx.doi.org/10.1186/s12859-016-1180-9 |
Ejemplares similares
-
Data-based RNA-seq simulations by binomial thinning
por: Gerard, David
Publicado: (2020) -
Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression
por: Subramaniyam, Siddharth, et al.
Publicado: (2019) -
Negative binomial mixed models for analyzing microbiome count data
por: Zhang, Xinyan, et al.
Publicado: (2017) -
Negative binomial additive model for RNA-Seq data analysis
por: Ren, Xu, et al.
Publicado: (2020) -
NBLDA: negative binomial linear discriminant analysis for RNA-Seq data
por: Dong, Kai, et al.
Publicado: (2016)