Cargando…
Systematic Discovery of Complex Indels in Human Cancers
Complex indels are formed by simultaneously deleting and inserting DNA fragments of different sizes at a common genomic location. Here, we present a systematic analysis of somatic complex indels in the coding sequences of over 8,000 cancer cases using Pindel-C. We discovered 285 complex indels in ca...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003782/ https://www.ncbi.nlm.nih.gov/pubmed/26657142 http://dx.doi.org/10.1038/nm.4002 |
Sumario: | Complex indels are formed by simultaneously deleting and inserting DNA fragments of different sizes at a common genomic location. Here, we present a systematic analysis of somatic complex indels in the coding sequences of over 8,000 cancer cases using Pindel-C. We discovered 285 complex indels in cancer genes (e.g., PIK3R1, TP53, ARID1A, GATA3, and KMT2D) in approximately 3.5% of cases analyzed; nearly all instances of complex indels were overlooked (81.1%) or mis-annotated (17.6%) in 2,199 samples previously reported. In-frame complex indels are enriched in PIK3R1 and EGFR while frameshifts are prevalent in VHL, GATA3, TP53, ARID1A, PTEN, and ATRX. Further, complex indels display strong tissue specificity (e.g., VHL from kidney cancer and GATA3 from breast cancer). Finally, structural analyses support findings of previously missed, but potentially druggable mutations in EGFR, MET, and KIT oncogenes. This study indicates the critical importance of improving complex indel discovery and interpretation in medical research. |
---|