Cargando…
Predicting existing targets for new drugs base on strategies for missing interactions
BACKGROUND: There has been paid more and more attention to supervised classification models in the area of predicting drug-target interactions (DTIs). However, in terms of classification, unavoidable missing DTIs in data would cause three issues which have not yet been addressed appropriately by for...
Autores principales: | Shi, Jian-Yu, Li, Jia-Xin, Lu, Hui-Meng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009565/ https://www.ncbi.nlm.nih.gov/pubmed/27585458 http://dx.doi.org/10.1186/s12859-016-1118-2 |
Ejemplares similares
-
TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs
por: Shi, Jian-Yu, et al.
Publicado: (2018) -
Predicting Drug-Target Interactions via Within-Score and Between-Score
por: Shi, Jian-Yu, et al.
Publicado: (2015) -
Missed, Not Missing: Phylogenomic Evidence for the Existence of Avian FoxP3
por: Denyer, Michael P., et al.
Publicado: (2016) -
Drug–target interaction prediction via multiple classification strategies
por: Ye, Qing, et al.
Publicado: (2022) -
Anti-COVID drugs: repurposing existing drugs or search for new complex entities, strategies and perspectives
por: Pawełczyk, Anna, et al.
Publicado: (2020)