Cargando…
Preclinical PET Neuroimaging of [(11)C]Bexarotene
Activation of retinoid X receptors (RXRs) has been proposed as a therapeutic mechanism for the treatment of neurodegeneration, including Alzheimer's and Parkinson's diseases. We previously reported radiolabeling of a Food and Drug Administration-approved RXR agonist, bexarotene, by copper-...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011434/ https://www.ncbi.nlm.nih.gov/pubmed/27553293 http://dx.doi.org/10.1177/1536012116663054 |
Sumario: | Activation of retinoid X receptors (RXRs) has been proposed as a therapeutic mechanism for the treatment of neurodegeneration, including Alzheimer's and Parkinson's diseases. We previously reported radiolabeling of a Food and Drug Administration-approved RXR agonist, bexarotene, by copper-mediated [(11)C]CO(2) fixation and preliminary positron emission tomography (PET) neuroimaging that demonstrated brain permeability in nonhuman primate with regional binding distribution consistent with RXRs. In this study, the brain uptake and saturability of [(11)C]bexarotene were studied in rats and nonhuman primates by PET imaging under baseline and greater target occupancy conditions. [(11)C]Bexarotene displays a high proportion of nonsaturable uptake in the brain and is unsuitable for RXR occupancy measurements in the central nervous system. |
---|