Cargando…

Design of Effective Primary MicroRNA Mimics With Different Basal Stem Conformations

Primary microRNA (pri-miRNA) mimics are important mediators of effective gene silencing and are well suited for sustained therapeutic applications. Pri-miRNA mimics are processed in the endogenous miRNA biogenesis pathway, where elements of the secondary RNA structure are crucial for efficient miRNA...

Descripción completa

Detalles Bibliográficos
Autores principales: van den Berg, Fiona T, Rossi, John J, Arbuthnot, Patrick, Weinberg, Marc S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012551/
https://www.ncbi.nlm.nih.gov/pubmed/26756196
http://dx.doi.org/10.1038/mtna.2015.53
Descripción
Sumario:Primary microRNA (pri-miRNA) mimics are important mediators of effective gene silencing and are well suited for sustained therapeutic applications. Pri-miRNA mimics are processed in the endogenous miRNA biogenesis pathway, where elements of the secondary RNA structure are crucial for efficient miRNA production. Cleavage of the pri-miRNA to a precursor miRNA (pre-miRNA) by Drosha-DGCR8 typically occurs adjacent to a basal stem of ~11 bp. However, a number of pri-miRNA structures are expected to contain slightly shorter or longer basal stems, which may be further disrupted in predicted folding of the expressed pri-miRNA sequence. We investigated the function and processing of natural and exogenous RNA guides from pri-miRNAs with various basal stems (9–13 bp), where a canonical hairpin was predicted to be well or poorly maintained in predicted structures of the expressed sequence. We have shown that RNA guides can be effectively derived from pri-miRNAs with various basal stem conformations, while predicted guide region stability can explain the function of pri-miRNA mimics, in agreement with previously proposed design principles. This study provides insight for the design of effective mimics based on naturally occurring pri-miRNAs and has identified several novel scaffolds suitable for use in gene silencing applications.