Cargando…
The Neurite Outgrowth Inhibitory Nogo-A-Δ20 Region Is an Intrinsically Disordered Segment Harbouring Three Stretches with Helical Propensity
Functional recovery from central neurotrauma, such as spinal cord injury, is limited by myelin-associated inhibitory proteins. The most prominent example, Nogo-A, imposes an inhibitory cue for nerve fibre growth via two independent domains: Nogo-A-Δ20 (residues 544–725 of the rat Nogo-A sequence) an...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017703/ https://www.ncbi.nlm.nih.gov/pubmed/27611089 http://dx.doi.org/10.1371/journal.pone.0161813 |
Sumario: | Functional recovery from central neurotrauma, such as spinal cord injury, is limited by myelin-associated inhibitory proteins. The most prominent example, Nogo-A, imposes an inhibitory cue for nerve fibre growth via two independent domains: Nogo-A-Δ20 (residues 544–725 of the rat Nogo-A sequence) and Nogo-66 (residues 1026–1091). Inhibitory signalling from these domains causes a collapse of the neuronal growth cone via individual receptor complexes, centred around sphingosine 1-phosphate receptor 2 (S1PR2) for Nogo-A-Δ20 and Nogo receptor 1 (NgR1) for Nogo-66. Whereas the helical conformation of Nogo-66 has been studied extensively, only little structural information is available for the Nogo-A-Δ20 region. We used nuclear magnetic resonance (NMR) spectroscopy to assess potential residual structural propensities of the intrinsically disordered Nogo-A-Δ20. Using triple resonance experiments, we were able to assign 94% of the non-proline backbone residues. While secondary structure analysis and relaxation measurements highlighted the intrinsically disordered character of Nogo-A-Δ20, three stretches comprising residues (561)EAIQESL(567), (639)EAMNVALKALGT(650), and (693)SNYSEIAK(700) form transient α-helical structures. Interestingly, (561)EAIQESL(567) is situated directly adjacent to one of the most conserved regions of Nogo-A-Δ20 that contains a binding motif for β1-integrin. Likewise, (639)EAMNVALKALGT(650) partially overlaps with the epitope recognized by 11C7, a Nogo-A-neutralizing antibody that promotes functional recovery from spinal cord injury. Diffusion measurements by pulse-field gradient NMR spectroscopy suggest concentration- and oxidation state-dependent dimerisation of Nogo-A-Δ20. Surprisingly, NMR and isothermal titration calorimetry (ITC) data could not validate previously shown binding of extracellular loops of S1PR2 to Nogo-A-Δ20. |
---|