Cargando…

Preparation of novel pirfenidone microspheres for lung-targeted delivery: in vitro and in vivo study

The aim of this study was to develop and characterize pirfenidone (PF)-loaded chitosan microspheres for lung targeting. The microspheres were prepared using the emulsion-solvent evaporation method and characterized by assessing morphology, particle size, and zeta potential. The microspheres had a sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dianbo, Gong, Liping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019316/
https://www.ncbi.nlm.nih.gov/pubmed/27660413
http://dx.doi.org/10.2147/DDDT.S113670
Descripción
Sumario:The aim of this study was to develop and characterize pirfenidone (PF)-loaded chitosan microspheres for lung targeting. The microspheres were prepared using the emulsion-solvent evaporation method and characterized by assessing morphology, particle size, and zeta potential. The microspheres had a spherical nature with highly smooth and integrated surfaces. The particle size of microspheres was 4.6±0.3 µm, and the zeta potential was 20.3±1.4 mV. The in vitro release results indicated that the obtained formulation of PF could reach the state of sustained release with a biphasic drug release pattern. It was observed that there was no significant difference in both the percentage of entrapment efficiency and that of drug release before and after the stability study. In vivo, the calculated relative bioavailability indicated greater pulmonary absorption of PF when it was encapsulated in microspheres. According to histopathological studies, no histological change occurred to the rat lung after the administration of PF-loaded chitosan microspheres.