Cargando…
Exendin-4 Promotes Survival of Mouse Pancreatic β-Cell Line in Lipotoxic Conditions, through the Extracellular Signal-Related Kinase 1/2 Pathway
Type 2 diabetes is a heterogeneous disorder that develops as a result of relatively inappropriate insulin secretion and insulin resistance. Increased levels of free fatty acids (FFAs) are one of the important factors for the pathogenesis of type 2 diabetes and contribute to defective β-cell prolifer...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021481/ https://www.ncbi.nlm.nih.gov/pubmed/27656657 http://dx.doi.org/10.1155/2016/5294025 |
Sumario: | Type 2 diabetes is a heterogeneous disorder that develops as a result of relatively inappropriate insulin secretion and insulin resistance. Increased levels of free fatty acids (FFAs) are one of the important factors for the pathogenesis of type 2 diabetes and contribute to defective β-cell proliferation and increased β-cell apoptosis. Recently, glucagon-like peptide-1 (GLP-1) receptor agonists have been shown to possess an antiapoptotic effect, by increasing β-cell mass and improving β-cell function. However, their effects on β-cells in vitro against lipotoxicity have not been elucidated completely. In this study, we investigated whether the GLP-1 receptor agonist exendin-4 displays prosurvival effects in pancreatic β-cells exposed to chronic elevated FFAs. Results showed that exendin-4 inhibited apoptosis induced by palmitate in MIN6 cells. After 24 h of incubation, exendin-4 caused rapid activation of extracellular signal-related kinase 1/2 (ERK1/2) under lipotoxic conditions. The ERK1/2 inhibitor PD98059 blocked the antilipotoxic effect of exendin-4 on MIN6 cells. Exendin-4 also inhibited the mitochondrial pathway of apoptosis. This inhibition is associated with upregulation of BCL-2. Our findings suggested that exendin-4 may exert cytoprotective effects through activation of ERK1/2 and inhibition of the mitochondrial apoptosis pathway. |
---|