Cargando…

SMCis: An Effective Algorithm for Discovery of Cis-Regulatory Modules

The discovery of cis-regulatory modules (CRMs) is a challenging problem in computational biology. Limited by the difficulty of using an HMM to model dependent features in transcriptional regulatory sequences (TRSs), the probabilistic modeling methods based on HMMs cannot accurately represent the dis...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Haitao, Huo, Hongwei, Yu, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026350/
https://www.ncbi.nlm.nih.gov/pubmed/27637070
http://dx.doi.org/10.1371/journal.pone.0162968
Descripción
Sumario:The discovery of cis-regulatory modules (CRMs) is a challenging problem in computational biology. Limited by the difficulty of using an HMM to model dependent features in transcriptional regulatory sequences (TRSs), the probabilistic modeling methods based on HMMs cannot accurately represent the distance between regulatory elements in TRSs and are cumbersome to model the prevailing dependencies between motifs within CRMs. We propose a probabilistic modeling algorithm called SMCis, which builds a more powerful CRM discovery model based on a hidden semi-Markov model. Our model characterizes the regulatory structure of CRMs and effectively models dependencies between motifs at a higher level of abstraction based on segments rather than nucleotides. Experimental results on three benchmark datasets indicate that our method performs better than the compared algorithms.