Cargando…

ENHANCING ADULT NERVE REGENERATION THROUGH THE KNOCKDOWN OF RETINOBLASTOMA PROTEIN

Tumour suppressor pathways may offer novel targets capable of altering the plasticity of post-mitotic adult neurons. Here we describe a role for retinoblastoma (Rb) protein, widely expressed in adult sensory neurons and their axons, during regeneration. In adult sensory neurons, Rb siRNA knockdown o...

Descripción completa

Detalles Bibliográficos
Autores principales: Christie, Kimberly J., Krishnan, Anand, Martinez, Jose A., Purdy, Kaylynn, Singh, Bhagat, Eaton, Shane, Zochodne, Douglas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028199/
https://www.ncbi.nlm.nih.gov/pubmed/24752312
http://dx.doi.org/10.1038/ncomms4670
Descripción
Sumario:Tumour suppressor pathways may offer novel targets capable of altering the plasticity of post-mitotic adult neurons. Here we describe a role for retinoblastoma (Rb) protein, widely expressed in adult sensory neurons and their axons, during regeneration. In adult sensory neurons, Rb siRNA knockdown or Rb1 deletion in vitro enhances neurite outgrowth and branching. Plasticity is achieved in part through upregulation of neuronal PPARγ; its antagonism inhibits Rb siRNA plasticity whereas a PPARγ agonist increases growth. In an in vivo regenerative paradigm following complete peripheral nerve trunk transection, direct delivery of Rb siRNA prompts increased outgrowth of axons from proximal stumps and entrains Schwann cells to accompany them for greater distances. Similarly Rb siRNA delivery following a nerve crush improves behavioural indices of motor and sensory recovery in mice. The overall findings indicate that inhibition of tumour suppressor molecules has a role to play in promoting adult neuron regeneration.