Cargando…

Adenovirus-mediated expression of orphan nuclear receptor NR4A2 targeting hepatic stellate cell attenuates liver fibrosis in rats

Liver fibrosis is a wound-healing response characterized with the accumulation of extracellular matrix (ECM). And hepatic stellate cells (HSCs) are the principal cell source of ECM. NR4A2 (Nurr1) is a member of orphan nuclear receptor NR4A family and acts as transcription factor. It participates in...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Pengguo, Li, Jie, Huo, Yan, Lu, Jin, Wan, Lili, Yang, Quanjun, Huang, Jinlu, Gan, Run, Guo, Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028713/
https://www.ncbi.nlm.nih.gov/pubmed/27646469
http://dx.doi.org/10.1038/srep33593
Descripción
Sumario:Liver fibrosis is a wound-healing response characterized with the accumulation of extracellular matrix (ECM). And hepatic stellate cells (HSCs) are the principal cell source of ECM. NR4A2 (Nurr1) is a member of orphan nuclear receptor NR4A family and acts as transcription factor. It participates in regulating cell differentiation, proliferation and apoptosis. We previously demonstrated that NR4A2 expression in fibrotic liver reduced significantly compared with normal liver and NR4A2 knockout in HSCs promoted ECM production. In the present study we explored the role of NR4A2 on liver fibrosis. Studies in cultured HSCs demonstrated that NR4A2 over-expression suppressed the activation of HSCs, such as ECM production and invasion ability. Moreover cell cycle was arrested, cell apoptosis was promoted and cell signaling pathway was influenced. Adenovirus-mediated delivery of NR4A2 in rats ameliorated significantly dimethylnitrosamine (DMN) induced liver fibrosis. The In vivo experiments produced results consistent with in vitro experiments. Taken together these results demonstrate NR4A2 enhancement attenuates liver fibrosis via suppressing the activation of HSCs and NR4A2 may be an ideal target for anti-fibrotic therapy.