Cargando…

HSPA12B Attenuated Acute Myocardial Ischemia/reperfusion Injury via Maintaining Endothelial Integrity in a PI3K/Akt/mTOR-dependent Mechanism

Endothelial damage is a critical mediator of myocardial ischemia/reperfusion (I/R) injury. HSPA12B is an endothelial-cell-specifically expressed heat shock protein. However, the roles of HSPA12B in acute myocardial I/R injury is unknown. Here we reported that myocardial I/R upregulated HSPA12B expre...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Qiuyue, Dai, Leyang, Wang, Yana, Zhang, Xiaojin, Li, Chuanfu, Jiang, Surong, Li, Yuehua, Ding, Zhengnian, Liu, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028890/
https://www.ncbi.nlm.nih.gov/pubmed/27644317
http://dx.doi.org/10.1038/srep33636
Descripción
Sumario:Endothelial damage is a critical mediator of myocardial ischemia/reperfusion (I/R) injury. HSPA12B is an endothelial-cell-specifically expressed heat shock protein. However, the roles of HSPA12B in acute myocardial I/R injury is unknown. Here we reported that myocardial I/R upregulated HSPA12B expression in ventricular tissues, and endothelial overexpression of HSPA12B in transgenic mice (Tg) limited infarct size, attenuated cardiac dysfunction and improved cardiomyocyte survival compared with their wild type littermates. These improvements were accompanied with the diminished myocardial no-reflow phenomenon, decreased microvascular leakage, and better maintained endothelial tight junctions. The I/R-evoked neutrophil infiltration was also suppressed in Tg hearts compared with its wild type (WT) littermates. Moreover, Tg hearts exhibited the enhanced activation of PI3K/Akt//mTOR signaling following I/R challenge. However, pharmacological inhibition of PI3K abolished the HSPA12B-induced cardioprotection against myocardial I/R injury. The data demonstrate for the first time that the endothelial HSPA12B protected hearts against myocardial I/R injury. This cardioprotective action of HSPA12B was mediated, at least in part, by improving endothelial integrity in a PI3K/Akt/mTOR-dependent mechanism. Our study suggests that targeting endothelial HSPA12B could be an alternative approach for the management of patients with myocardial I/R injury.