Cargando…
Driver or passenger effects of augmented c-Myc and Cdc20 in gliomagenesis
PURPOSE: Cdc20 and c-Myc are commonly overexpressed in a broad spectrum of cancers, including glioblastoma (GBM). Despite this clear association, whether c-Myc and Cdc20 overexpression is a driver or passenger event in gliomagenesis remains unclear. RESULTS: Both c-Myc and Cdc20 induced the prolifer...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029644/ https://www.ncbi.nlm.nih.gov/pubmed/26993778 http://dx.doi.org/10.18632/oncotarget.8080 |
Sumario: | PURPOSE: Cdc20 and c-Myc are commonly overexpressed in a broad spectrum of cancers, including glioblastoma (GBM). Despite this clear association, whether c-Myc and Cdc20 overexpression is a driver or passenger event in gliomagenesis remains unclear. RESULTS: Both c-Myc and Cdc20 induced the proliferation of primary glial progenitor cells. c-Myc also promoted the formation of soft agar anchorage-independent colonies. In the RCAS/Ntv-a glia-specific transgenic mouse model, c-Myc increased the GBM incidence from 19.1% to 47.4% by 12 weeks of age when combined with kRas and Akt3 in Ntv-a INK4a-ARF (also known as CDKN2A)-null mice. In contrast, Cdc20 decreased the GBM incidence from 19.1% to 9.1%. Moreover, cell differentiation was modulated by c-Myc in kRas/Akt3-induced GBM on the basis of Nestin/GFAP expression (glial progenitor cell differentiation), while Cdc20 had no effect on primary glial progenitor cell differentiation. MATERIALS AND METHODS: We used glial progenitor cells from Ntv-a newborn mice to evaluate the role of c-Myc and Cdc20 in the proliferation and transformation of GBM in vitro and in vivo. We further determined whether c-Myc and Cdc20 have a driver or passenger role in GBM development using kRas/Akt3 signals in a RCAS/Ntv-a mouse model. CONCLUSIONS: These results suggest that the driver or passenger of oncogene signaling is dependent on cellular status. c-Myc is a driver when combined with kRas/Akt3 oncogenic signals in gliomagenesis, whereas Cdc20 overexpression is a passenger. Inhibition of cell differentiation of c-Myc may be a target for anti-glioma therapy. |
---|