Cargando…
RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling
Invading pathogen nucleic acids are recognized and bound by cytoplasmic (retinoic acid-inducible gene I [RIG-I]-like) and membrane-bound (Toll-like) pattern recognition receptors to activate innate immune signaling. Modified nucleotides, when present in RNA molecules, diminish the magnitude of these...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030355/ https://www.ncbi.nlm.nih.gov/pubmed/27651356 http://dx.doi.org/10.1128/mBio.00833-16 |
_version_ | 1782454663255162880 |
---|---|
author | Durbin, Ann Fiegen Wang, Chen Marcotrigiano, Joseph Gehrke, Lee |
author_facet | Durbin, Ann Fiegen Wang, Chen Marcotrigiano, Joseph Gehrke, Lee |
author_sort | Durbin, Ann Fiegen |
collection | PubMed |
description | Invading pathogen nucleic acids are recognized and bound by cytoplasmic (retinoic acid-inducible gene I [RIG-I]-like) and membrane-bound (Toll-like) pattern recognition receptors to activate innate immune signaling. Modified nucleotides, when present in RNA molecules, diminish the magnitude of these signaling responses. However, mechanisms explaining the blunted signaling have not been elucidated. In this study, we used several independent biological assays, including inhibition of virus replication, RIG-I:RNA binding assays, and limited trypsin digestion of RIG-I:RNA complexes, to begin to understand how RNAs containing modified nucleotides avoid or suppress innate immune signaling. The experiments were based on a model innate immune activating RNA molecule, the polyU/UC RNA domain of hepatitis C virus, which was transcribed in vitro with canonical nucleotides or with one of eight modified nucleotides. The approach revealed signature assay responses associated with individual modified nucleotides or classes of modified nucleotides. For example, while both N-6-methyladenosine (m6A) and pseudouridine nucleotides correlate with diminished signaling, RNA containing m6A modifications bound RIG-I poorly, while RNA containing pseudouridine bound RIG-I with high affinity but failed to trigger the canonical RIG-I conformational changes associated with robust signaling. These data advance understanding of RNA-mediated innate immune signaling, with additional relevance for applying nucleotide modifications to RNA therapeutics. |
format | Online Article Text |
id | pubmed-5030355 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-50303552016-09-23 RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling Durbin, Ann Fiegen Wang, Chen Marcotrigiano, Joseph Gehrke, Lee mBio Research Article Invading pathogen nucleic acids are recognized and bound by cytoplasmic (retinoic acid-inducible gene I [RIG-I]-like) and membrane-bound (Toll-like) pattern recognition receptors to activate innate immune signaling. Modified nucleotides, when present in RNA molecules, diminish the magnitude of these signaling responses. However, mechanisms explaining the blunted signaling have not been elucidated. In this study, we used several independent biological assays, including inhibition of virus replication, RIG-I:RNA binding assays, and limited trypsin digestion of RIG-I:RNA complexes, to begin to understand how RNAs containing modified nucleotides avoid or suppress innate immune signaling. The experiments were based on a model innate immune activating RNA molecule, the polyU/UC RNA domain of hepatitis C virus, which was transcribed in vitro with canonical nucleotides or with one of eight modified nucleotides. The approach revealed signature assay responses associated with individual modified nucleotides or classes of modified nucleotides. For example, while both N-6-methyladenosine (m6A) and pseudouridine nucleotides correlate with diminished signaling, RNA containing m6A modifications bound RIG-I poorly, while RNA containing pseudouridine bound RIG-I with high affinity but failed to trigger the canonical RIG-I conformational changes associated with robust signaling. These data advance understanding of RNA-mediated innate immune signaling, with additional relevance for applying nucleotide modifications to RNA therapeutics. American Society for Microbiology 2016-09-20 /pmc/articles/PMC5030355/ /pubmed/27651356 http://dx.doi.org/10.1128/mBio.00833-16 Text en Copyright © 2016 Durbin et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Durbin, Ann Fiegen Wang, Chen Marcotrigiano, Joseph Gehrke, Lee RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling |
title | RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling |
title_full | RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling |
title_fullStr | RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling |
title_full_unstemmed | RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling |
title_short | RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling |
title_sort | rnas containing modified nucleotides fail to trigger rig-i conformational changes for innate immune signaling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030355/ https://www.ncbi.nlm.nih.gov/pubmed/27651356 http://dx.doi.org/10.1128/mBio.00833-16 |
work_keys_str_mv | AT durbinannfiegen rnascontainingmodifiednucleotidesfailtotriggerrigiconformationalchangesforinnateimmunesignaling AT wangchen rnascontainingmodifiednucleotidesfailtotriggerrigiconformationalchangesforinnateimmunesignaling AT marcotrigianojoseph rnascontainingmodifiednucleotidesfailtotriggerrigiconformationalchangesforinnateimmunesignaling AT gehrkelee rnascontainingmodifiednucleotidesfailtotriggerrigiconformationalchangesforinnateimmunesignaling |