Cargando…
A hybrid expectation maximisation and MCMC sampling algorithm to implement Bayesian mixture model based genomic prediction and QTL mapping
BACKGROUND: Bayesian mixture models in which the effects of SNP are assumed to come from normal distributions with different variances are attractive for simultaneous genomic prediction and QTL mapping. These models are usually implemented with Monte Carlo Markov Chain (MCMC) sampling, which require...
Autores principales: | Wang, Tingting, Chen, Yi-Ping Phoebe, Bowman, Phil J., Goddard, Michael E., Hayes, Ben J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031345/ https://www.ncbi.nlm.nih.gov/pubmed/27654580 http://dx.doi.org/10.1186/s12864-016-3082-7 |
Ejemplares similares
-
Application of a Bayesian non-linear model hybrid scheme to sequence data for genomic prediction and QTL mapping
por: Wang, Tingting, et al.
Publicado: (2017) -
A multi-trait Bayesian method for mapping QTL and genomic prediction
por: Kemper, Kathryn E., et al.
Publicado: (2018) -
Comparing MCMC and INLA for disease mapping with Bayesian hierarchical models
por: De Smedt, Tom, et al.
Publicado: (2015) -
Accelerating MCMC algorithms
por: Robert, Christian P., et al.
Publicado: (2018) -
Likelihood, Bayesian, and mcmc methods in quantitative genetics
por: Sorensen, Daniel, et al.
Publicado: (2002)