Targeting Antitumor Immune Response for Enhancing the Efficacy of Photodynamic Therapy of Cancer: Recent Advances and Future Perspectives

Photodynamic therapy (PDT) is a minimally invasive therapeutic strategy for cancer treatment, which can destroy local tumor cells and induce systemic antitumor immune response, whereas, focusing on improving direct cytotoxicity to tumor cells treated by PDT, there is growing interest in developing a...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yamin, Hu, Yue, Wang, Hongjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031843/
https://www.ncbi.nlm.nih.gov/pubmed/27672421
http://dx.doi.org/10.1155/2016/5274084
Descripción
Sumario:Photodynamic therapy (PDT) is a minimally invasive therapeutic strategy for cancer treatment, which can destroy local tumor cells and induce systemic antitumor immune response, whereas, focusing on improving direct cytotoxicity to tumor cells treated by PDT, there is growing interest in developing approaches to further explore the immune stimulatory properties of PDT. In this review we summarize the current knowledge of the innate and adaptive immune responses induced by PDT against tumors, providing evidence showing PDT facilitated-antitumor immunity. Various immunotherapeutic approaches on different cells are reviewed for their effectiveness in improving the treatment efficiency in concert with PDT. Future perspectives are discussed for further enhancing PDT efficiency via intracellular targetable drug delivery as well as optimized experimental model development associated with the study of antitumor immune response.