Cargando…

Evaluation of some lignocellulosic byproducts of food industry for microbial xylitol production by Candida tropicalis

Some lignocellulosic food byproducts such as potato peels, wheat bran, barley bran and chestnut shells were evaluated as potential sources of xylose for microbial xylitol production by yeasts. Potential yeast strains were selected after screening xylitol production of some indigenous yeasts in a def...

Descripción completa

Detalles Bibliográficos
Autores principales: Eryasar, Kubra, Karasu-Yalcin, Seda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033774/
https://www.ncbi.nlm.nih.gov/pubmed/28330274
http://dx.doi.org/10.1007/s13205-016-0521-8
Descripción
Sumario:Some lignocellulosic food byproducts such as potato peels, wheat bran, barley bran and chestnut shells were evaluated as potential sources of xylose for microbial xylitol production by yeasts. Potential yeast strains were selected after screening xylitol production of some indigenous yeasts in a defined fermentation medium. Candida tropicalis strains gave the highest results with 83.28 and 54.07 g/L xylitol production from 100 g/L xylose. Lignocellulosic materials were exposed to acid hydrolysis at different conditions. Chestnut shells gave the highest xylose yield and the hydrolysate of chestnut shells was used in further experiments in which xylitol productions of two potential C. tropicalis strains were investigated. Combined detoxification method including evaporation, overliming and activated charcoal with the use of threefold concentration and also yeast extract supplementation suggested to be efficient for both growth and product formation in chestnut shell hydrolysate in which 40 % xylitol yield was obtained. It was concluded that detoxified and fortified chestnut shell hydrolysate could be a potential medium for xylitol production.