Cargando…
Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co(2)Fe(6)B(2) Free Layer Structure
For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co(2)Fe(6)B(2) free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039147/ https://www.ncbi.nlm.nih.gov/pubmed/27677304 http://dx.doi.org/10.1186/s11671-016-1637-9 |
Sumario: | For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co(2)Fe(6)B(2) free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co(2)Fe(6)B(2) free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11671-016-1637-9) contains supplementary material, which is available to authorized users. |
---|