Cargando…

Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co(2)Fe(6)B(2) Free Layer Structure

For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co(2)Fe(6)B(2) free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Du-Yeong, Lee, Seung-Eun, Shim, Tae-Hun, Park, Jea-Gun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039147/
https://www.ncbi.nlm.nih.gov/pubmed/27677304
http://dx.doi.org/10.1186/s11671-016-1637-9
Descripción
Sumario:For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co(2)Fe(6)B(2) free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co(2)Fe(6)B(2) free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11671-016-1637-9) contains supplementary material, which is available to authorized users.