Cargando…
2-O-Acyl-3-O-(1-acyloxyalkyl) Prodrugs of 5,6-Isopropylidene-l-Ascorbic Acid and l-Ascorbic Acid: Antioxidant Activity and Ability to Permeate Silicone Membranes
2-O-Acyl-3-O-(1-acyloxyalkyl) prodrug derivatives, 15, of 5,6-isopropylidene-l-ascorbic acid, VCA, and l-ascorbic acid, VC, have been characterized by measuring (1) their solubilities in water (S(AQ)) and in 1-octanol (S(OCT)); (2) the ability of one member of the homologous series, 15a, to diffuse...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039441/ https://www.ncbi.nlm.nih.gov/pubmed/27438850 http://dx.doi.org/10.3390/pharmaceutics8030022 |
_version_ | 1782456055536549888 |
---|---|
author | Thiele, Nikki A. McGowan, Jennifer Sloan, Kenneth B. |
author_facet | Thiele, Nikki A. McGowan, Jennifer Sloan, Kenneth B. |
author_sort | Thiele, Nikki A. |
collection | PubMed |
description | 2-O-Acyl-3-O-(1-acyloxyalkyl) prodrug derivatives, 15, of 5,6-isopropylidene-l-ascorbic acid, VCA, and l-ascorbic acid, VC, have been characterized by measuring (1) their solubilities in water (S(AQ)) and in 1-octanol (S(OCT)); (2) the ability of one member of the homologous series, 15a, to diffuse through a silicone membrane from its application in propylene glycol:water (PG:AQ), 30:70; (3) the ability of another member of the series, 15e, to express cellular antioxidant activity (CAA) in HaCaT cells; and (4) the ability of 15e to support cell viability in HaCaT cells. All of the prodrugs were more soluble in 1-octanol than VC or VCA were. 15a, which exhibited a good balance between S(OCT) and S(AQ), was found to deliver approximately 15 times more 15a than VCA delivered VCA through a silicone membrane from PG:AQ, 30:70. Under those conditions, no VC permeated the membrane. 15e, which hydrolyzed to release acetaldehyde as a byproduct instead of the toxin formaldehyde, exhibited approximately 30 times the antioxidant activity of VC in CaHaT cells and supported cell viability up to 900 μM in HaCaT cells. |
format | Online Article Text |
id | pubmed-5039441 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-50394412016-10-04 2-O-Acyl-3-O-(1-acyloxyalkyl) Prodrugs of 5,6-Isopropylidene-l-Ascorbic Acid and l-Ascorbic Acid: Antioxidant Activity and Ability to Permeate Silicone Membranes Thiele, Nikki A. McGowan, Jennifer Sloan, Kenneth B. Pharmaceutics Article 2-O-Acyl-3-O-(1-acyloxyalkyl) prodrug derivatives, 15, of 5,6-isopropylidene-l-ascorbic acid, VCA, and l-ascorbic acid, VC, have been characterized by measuring (1) their solubilities in water (S(AQ)) and in 1-octanol (S(OCT)); (2) the ability of one member of the homologous series, 15a, to diffuse through a silicone membrane from its application in propylene glycol:water (PG:AQ), 30:70; (3) the ability of another member of the series, 15e, to express cellular antioxidant activity (CAA) in HaCaT cells; and (4) the ability of 15e to support cell viability in HaCaT cells. All of the prodrugs were more soluble in 1-octanol than VC or VCA were. 15a, which exhibited a good balance between S(OCT) and S(AQ), was found to deliver approximately 15 times more 15a than VCA delivered VCA through a silicone membrane from PG:AQ, 30:70. Under those conditions, no VC permeated the membrane. 15e, which hydrolyzed to release acetaldehyde as a byproduct instead of the toxin formaldehyde, exhibited approximately 30 times the antioxidant activity of VC in CaHaT cells and supported cell viability up to 900 μM in HaCaT cells. MDPI 2016-07-18 /pmc/articles/PMC5039441/ /pubmed/27438850 http://dx.doi.org/10.3390/pharmaceutics8030022 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Thiele, Nikki A. McGowan, Jennifer Sloan, Kenneth B. 2-O-Acyl-3-O-(1-acyloxyalkyl) Prodrugs of 5,6-Isopropylidene-l-Ascorbic Acid and l-Ascorbic Acid: Antioxidant Activity and Ability to Permeate Silicone Membranes |
title | 2-O-Acyl-3-O-(1-acyloxyalkyl) Prodrugs of 5,6-Isopropylidene-l-Ascorbic Acid and l-Ascorbic Acid: Antioxidant Activity and Ability to Permeate Silicone Membranes |
title_full | 2-O-Acyl-3-O-(1-acyloxyalkyl) Prodrugs of 5,6-Isopropylidene-l-Ascorbic Acid and l-Ascorbic Acid: Antioxidant Activity and Ability to Permeate Silicone Membranes |
title_fullStr | 2-O-Acyl-3-O-(1-acyloxyalkyl) Prodrugs of 5,6-Isopropylidene-l-Ascorbic Acid and l-Ascorbic Acid: Antioxidant Activity and Ability to Permeate Silicone Membranes |
title_full_unstemmed | 2-O-Acyl-3-O-(1-acyloxyalkyl) Prodrugs of 5,6-Isopropylidene-l-Ascorbic Acid and l-Ascorbic Acid: Antioxidant Activity and Ability to Permeate Silicone Membranes |
title_short | 2-O-Acyl-3-O-(1-acyloxyalkyl) Prodrugs of 5,6-Isopropylidene-l-Ascorbic Acid and l-Ascorbic Acid: Antioxidant Activity and Ability to Permeate Silicone Membranes |
title_sort | 2-o-acyl-3-o-(1-acyloxyalkyl) prodrugs of 5,6-isopropylidene-l-ascorbic acid and l-ascorbic acid: antioxidant activity and ability to permeate silicone membranes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039441/ https://www.ncbi.nlm.nih.gov/pubmed/27438850 http://dx.doi.org/10.3390/pharmaceutics8030022 |
work_keys_str_mv | AT thielenikkia 2oacyl3o1acyloxyalkylprodrugsof56isopropylidenelascorbicacidandlascorbicacidantioxidantactivityandabilitytopermeatesiliconemembranes AT mcgowanjennifer 2oacyl3o1acyloxyalkylprodrugsof56isopropylidenelascorbicacidandlascorbicacidantioxidantactivityandabilitytopermeatesiliconemembranes AT sloankennethb 2oacyl3o1acyloxyalkylprodrugsof56isopropylidenelascorbicacidandlascorbicacidantioxidantactivityandabilitytopermeatesiliconemembranes |