Cargando…
Physiologically based and population PK modeling in optimizing drug development: A predict–learn–confirm analysis
Physiologically based pharmacokinetic (PBPK) modeling and classical population pharmacokinetic (PK) model‐based simulations are increasingly used to answer various drug development questions. In this study, we propose a methodology to optimize the development of drugs, primarily cleared by the kidne...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039936/ https://www.ncbi.nlm.nih.gov/pubmed/26031410 http://dx.doi.org/10.1002/cpt.155 |
Sumario: | Physiologically based pharmacokinetic (PBPK) modeling and classical population pharmacokinetic (PK) model‐based simulations are increasingly used to answer various drug development questions. In this study, we propose a methodology to optimize the development of drugs, primarily cleared by the kidney, using model‐based approaches to determine the need for a dedicated renal impairment (RI) study. First, the impact of RI on drug exposure is simulated via PBPK modeling and then confirmed using classical population PK modeling of phase 2/3 data. This methodology was successfully evaluated and applied to an investigational agent, orteronel (nonsteroidal, reversible, selective 17,20‐lyase inhibitor). A phase 1 RI study confirmed the accuracy of model‐based predictions. Hence, for drugs eliminated primarily via renal clearance, this modeling approach can enable inclusion of patients with RI in phase 3 trials at appropriate doses, which may be an alternative to a dedicated RI study, or suggest that only a reduced‐size study in severe RI may be sufficient. |
---|