Cargando…
The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor
Maintaining an optimal level of chromosomal supercoiling is critical for the progression of DNA replication and transcription. Moreover, changes in global supercoiling affect the expression of a large number of genes and play a fundamental role in adapting to stress. Topoisomerase I (TopA) and gyras...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055605/ https://www.ncbi.nlm.nih.gov/pubmed/27551021 http://dx.doi.org/10.1128/JB.00530-16 |
_version_ | 1782458784185057280 |
---|---|
author | Szafran, Marcin Jan Gongerowska, Martyna Gutkowski, Paweł Zakrzewska-Czerwińska, Jolanta Jakimowicz, Dagmara |
author_facet | Szafran, Marcin Jan Gongerowska, Martyna Gutkowski, Paweł Zakrzewska-Czerwińska, Jolanta Jakimowicz, Dagmara |
author_sort | Szafran, Marcin Jan |
collection | PubMed |
description | Maintaining an optimal level of chromosomal supercoiling is critical for the progression of DNA replication and transcription. Moreover, changes in global supercoiling affect the expression of a large number of genes and play a fundamental role in adapting to stress. Topoisomerase I (TopA) and gyrase are key players in the regulation of bacterial chromosomal topology through their respective abilities to relax and compact DNA. Soil bacteria such as Streptomyces species, which grow as branched, multigenomic hyphae, are subject to environmental stresses that are associated with changes in chromosomal topology. The topological fluctuations modulate the transcriptional activity of a large number of genes and in Streptomyces are related to the production of antibiotics. To better understand the regulation of topological homeostasis in Streptomyces coelicolor, we investigated the interplay between the activities of the topoisomerase-encoding genes topA and gyrBA. We show that the expression of both genes is supercoiling sensitive. Remarkably, increased chromosomal supercoiling induces the topA promoter but only slightly influences gyrBA transcription, while DNA relaxation affects the topA promoter only marginally but strongly activates the gyrBA operon. Moreover, we showed that exposure to elevated temperatures induces rapid relaxation, which results in changes in the levels of both topoisomerases. We therefore propose a unique mechanism of S. coelicolor chromosomal topology maintenance based on the supercoiling-dependent stimulation, rather than repression, of the transcription of both topoisomerase genes. These findings provide important insight into the maintenance of topological homeostasis in an industrially important antibiotic producer. IMPORTANCE We describe the unique regulation of genes encoding two topoisomerases, topoisomerase I (TopA) and gyrase, in a model Streptomyces species. Our studies demonstrate the coordination of topoisomerase gene regulation, which is crucial for maintenance of topological homeostasis. Streptomyces species are producers of a plethora of biologically active secondary metabolites, including antibiotics, antitumor agents, and immunosuppressants. The significant regulatory factor controlling the secondary metabolism is the global chromosomal topology. Thus, the investigation of chromosomal topology homeostasis in Streptomyces strains is crucial for their use in industrial applications as producers of secondary metabolites. |
format | Online Article Text |
id | pubmed-5055605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-50556052016-10-24 The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor Szafran, Marcin Jan Gongerowska, Martyna Gutkowski, Paweł Zakrzewska-Czerwińska, Jolanta Jakimowicz, Dagmara J Bacteriol Articles Maintaining an optimal level of chromosomal supercoiling is critical for the progression of DNA replication and transcription. Moreover, changes in global supercoiling affect the expression of a large number of genes and play a fundamental role in adapting to stress. Topoisomerase I (TopA) and gyrase are key players in the regulation of bacterial chromosomal topology through their respective abilities to relax and compact DNA. Soil bacteria such as Streptomyces species, which grow as branched, multigenomic hyphae, are subject to environmental stresses that are associated with changes in chromosomal topology. The topological fluctuations modulate the transcriptional activity of a large number of genes and in Streptomyces are related to the production of antibiotics. To better understand the regulation of topological homeostasis in Streptomyces coelicolor, we investigated the interplay between the activities of the topoisomerase-encoding genes topA and gyrBA. We show that the expression of both genes is supercoiling sensitive. Remarkably, increased chromosomal supercoiling induces the topA promoter but only slightly influences gyrBA transcription, while DNA relaxation affects the topA promoter only marginally but strongly activates the gyrBA operon. Moreover, we showed that exposure to elevated temperatures induces rapid relaxation, which results in changes in the levels of both topoisomerases. We therefore propose a unique mechanism of S. coelicolor chromosomal topology maintenance based on the supercoiling-dependent stimulation, rather than repression, of the transcription of both topoisomerase genes. These findings provide important insight into the maintenance of topological homeostasis in an industrially important antibiotic producer. IMPORTANCE We describe the unique regulation of genes encoding two topoisomerases, topoisomerase I (TopA) and gyrase, in a model Streptomyces species. Our studies demonstrate the coordination of topoisomerase gene regulation, which is crucial for maintenance of topological homeostasis. Streptomyces species are producers of a plethora of biologically active secondary metabolites, including antibiotics, antitumor agents, and immunosuppressants. The significant regulatory factor controlling the secondary metabolism is the global chromosomal topology. Thus, the investigation of chromosomal topology homeostasis in Streptomyces strains is crucial for their use in industrial applications as producers of secondary metabolites. American Society for Microbiology 2016-10-07 /pmc/articles/PMC5055605/ /pubmed/27551021 http://dx.doi.org/10.1128/JB.00530-16 Text en Copyright © 2016 Szafran et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Articles Szafran, Marcin Jan Gongerowska, Martyna Gutkowski, Paweł Zakrzewska-Czerwińska, Jolanta Jakimowicz, Dagmara The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor |
title | The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor |
title_full | The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor |
title_fullStr | The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor |
title_full_unstemmed | The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor |
title_short | The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor |
title_sort | coordinated positive regulation of topoisomerase genes maintains topological homeostasis in streptomyces coelicolor |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055605/ https://www.ncbi.nlm.nih.gov/pubmed/27551021 http://dx.doi.org/10.1128/JB.00530-16 |
work_keys_str_mv | AT szafranmarcinjan thecoordinatedpositiveregulationoftopoisomerasegenesmaintainstopologicalhomeostasisinstreptomycescoelicolor AT gongerowskamartyna thecoordinatedpositiveregulationoftopoisomerasegenesmaintainstopologicalhomeostasisinstreptomycescoelicolor AT gutkowskipaweł thecoordinatedpositiveregulationoftopoisomerasegenesmaintainstopologicalhomeostasisinstreptomycescoelicolor AT zakrzewskaczerwinskajolanta thecoordinatedpositiveregulationoftopoisomerasegenesmaintainstopologicalhomeostasisinstreptomycescoelicolor AT jakimowiczdagmara thecoordinatedpositiveregulationoftopoisomerasegenesmaintainstopologicalhomeostasisinstreptomycescoelicolor AT szafranmarcinjan coordinatedpositiveregulationoftopoisomerasegenesmaintainstopologicalhomeostasisinstreptomycescoelicolor AT gongerowskamartyna coordinatedpositiveregulationoftopoisomerasegenesmaintainstopologicalhomeostasisinstreptomycescoelicolor AT gutkowskipaweł coordinatedpositiveregulationoftopoisomerasegenesmaintainstopologicalhomeostasisinstreptomycescoelicolor AT zakrzewskaczerwinskajolanta coordinatedpositiveregulationoftopoisomerasegenesmaintainstopologicalhomeostasisinstreptomycescoelicolor AT jakimowiczdagmara coordinatedpositiveregulationoftopoisomerasegenesmaintainstopologicalhomeostasisinstreptomycescoelicolor |