Cargando…
TNF-α Autocrine Feedback Loops in Human Monocytes: The Pro- and Anti-Inflammatory Roles of the TNF-α Receptors Support the Concept of Selective TNFR1 Blockade In Vivo
Selective TNFR1 blockade in inflammatory diseases is emerging as a clinical strategy. We studied the roles of the two TNF-α receptors, TNFR1 and TNFR2, in human monocytes, the principal producer of TNF-α and central to many TNF-α driven diseases. We hypothesised that TNF-α has pro- and anti-inflamma...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055993/ https://www.ncbi.nlm.nih.gov/pubmed/27747245 http://dx.doi.org/10.1155/2016/1079851 |
_version_ | 1782458834948718592 |
---|---|
author | Gane, Jennie M. Stockley, Robert A. Sapey, Elizabeth |
author_facet | Gane, Jennie M. Stockley, Robert A. Sapey, Elizabeth |
author_sort | Gane, Jennie M. |
collection | PubMed |
description | Selective TNFR1 blockade in inflammatory diseases is emerging as a clinical strategy. We studied the roles of the two TNF-α receptors, TNFR1 and TNFR2, in human monocytes, the principal producer of TNF-α and central to many TNF-α driven diseases. We hypothesised that TNF-α has pro- and anti-inflammatory effects on monocytes, occurring differentially via TNFR1 and TNFR2. Monocytes were isolated from healthy human subjects and exposed to LPS, plus/minus the addition of blocking antibodies to TNF-α or its receptors. Pro- and anti-inflammatory cytokine production was quantified using real-time PCR and ELISAs. Cell surface expression of TNFR1/2 was measured by flow cytometry. We demonstrated that monocytes vary in the expression patterns of TNFR1 and TNFR2. Autocrine binding of TNF-α led to sustained upregulation of proinflammatory cytokines via TNFR1. In contrast, autocrine binding via TNFR2 upregulated the anti-inflammatory cytokine, IL-10, without proinflammatory effect. TNFR2 was responsible for binding soluble TNF-α secreted by monocytes, clearing the cytokine from the pericellular environment. TNFR1 blockade did not change the cell surface expression of TNFR2, leaving this receptor free to upregulate IL-10. These novel results support the concept of selective TNFR1 blockade in vivo in order that positive anti-inflammatory effects of TNF-α can be retained via TNFR2 ligation. |
format | Online Article Text |
id | pubmed-5055993 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-50559932016-10-16 TNF-α Autocrine Feedback Loops in Human Monocytes: The Pro- and Anti-Inflammatory Roles of the TNF-α Receptors Support the Concept of Selective TNFR1 Blockade In Vivo Gane, Jennie M. Stockley, Robert A. Sapey, Elizabeth J Immunol Res Research Article Selective TNFR1 blockade in inflammatory diseases is emerging as a clinical strategy. We studied the roles of the two TNF-α receptors, TNFR1 and TNFR2, in human monocytes, the principal producer of TNF-α and central to many TNF-α driven diseases. We hypothesised that TNF-α has pro- and anti-inflammatory effects on monocytes, occurring differentially via TNFR1 and TNFR2. Monocytes were isolated from healthy human subjects and exposed to LPS, plus/minus the addition of blocking antibodies to TNF-α or its receptors. Pro- and anti-inflammatory cytokine production was quantified using real-time PCR and ELISAs. Cell surface expression of TNFR1/2 was measured by flow cytometry. We demonstrated that monocytes vary in the expression patterns of TNFR1 and TNFR2. Autocrine binding of TNF-α led to sustained upregulation of proinflammatory cytokines via TNFR1. In contrast, autocrine binding via TNFR2 upregulated the anti-inflammatory cytokine, IL-10, without proinflammatory effect. TNFR2 was responsible for binding soluble TNF-α secreted by monocytes, clearing the cytokine from the pericellular environment. TNFR1 blockade did not change the cell surface expression of TNFR2, leaving this receptor free to upregulate IL-10. These novel results support the concept of selective TNFR1 blockade in vivo in order that positive anti-inflammatory effects of TNF-α can be retained via TNFR2 ligation. Hindawi Publishing Corporation 2016 2016-09-22 /pmc/articles/PMC5055993/ /pubmed/27747245 http://dx.doi.org/10.1155/2016/1079851 Text en Copyright © 2016 Jennie M. Gane et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gane, Jennie M. Stockley, Robert A. Sapey, Elizabeth TNF-α Autocrine Feedback Loops in Human Monocytes: The Pro- and Anti-Inflammatory Roles of the TNF-α Receptors Support the Concept of Selective TNFR1 Blockade In Vivo |
title | TNF-α Autocrine Feedback Loops in Human Monocytes: The Pro- and Anti-Inflammatory Roles of the TNF-α Receptors Support the Concept of Selective TNFR1 Blockade In Vivo
|
title_full | TNF-α Autocrine Feedback Loops in Human Monocytes: The Pro- and Anti-Inflammatory Roles of the TNF-α Receptors Support the Concept of Selective TNFR1 Blockade In Vivo
|
title_fullStr | TNF-α Autocrine Feedback Loops in Human Monocytes: The Pro- and Anti-Inflammatory Roles of the TNF-α Receptors Support the Concept of Selective TNFR1 Blockade In Vivo
|
title_full_unstemmed | TNF-α Autocrine Feedback Loops in Human Monocytes: The Pro- and Anti-Inflammatory Roles of the TNF-α Receptors Support the Concept of Selective TNFR1 Blockade In Vivo
|
title_short | TNF-α Autocrine Feedback Loops in Human Monocytes: The Pro- and Anti-Inflammatory Roles of the TNF-α Receptors Support the Concept of Selective TNFR1 Blockade In Vivo
|
title_sort | tnf-α autocrine feedback loops in human monocytes: the pro- and anti-inflammatory roles of the tnf-α receptors support the concept of selective tnfr1 blockade in vivo |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055993/ https://www.ncbi.nlm.nih.gov/pubmed/27747245 http://dx.doi.org/10.1155/2016/1079851 |
work_keys_str_mv | AT ganejenniem tnfaautocrinefeedbackloopsinhumanmonocytestheproandantiinflammatoryrolesofthetnfareceptorssupporttheconceptofselectivetnfr1blockadeinvivo AT stockleyroberta tnfaautocrinefeedbackloopsinhumanmonocytestheproandantiinflammatoryrolesofthetnfareceptorssupporttheconceptofselectivetnfr1blockadeinvivo AT sapeyelizabeth tnfaautocrinefeedbackloopsinhumanmonocytestheproandantiinflammatoryrolesofthetnfareceptorssupporttheconceptofselectivetnfr1blockadeinvivo |