Cargando…

Rational design of a synthetic mammalian riboswitch as a ligand-responsive -1 ribosomal frame-shifting stimulator

Metabolite-responsive RNA pseudoknots derived from prokaryotic riboswitches have been shown to stimulate −1 programmed ribosomal frameshifting (PRF), suggesting −1 PRF as a promising gene expression platform to extend riboswitch applications in higher eukaryotes. However, its general application has...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Ya-Hui, Chang, Kung-Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5062990/
https://www.ncbi.nlm.nih.gov/pubmed/27521370
http://dx.doi.org/10.1093/nar/gkw718
Descripción
Sumario:Metabolite-responsive RNA pseudoknots derived from prokaryotic riboswitches have been shown to stimulate −1 programmed ribosomal frameshifting (PRF), suggesting −1 PRF as a promising gene expression platform to extend riboswitch applications in higher eukaryotes. However, its general application has been hampered by difficulty in identifying a specific ligand-responsive pseudoknot that also functions as a ligand-dependent -1 PRF stimulator. We addressed this problem by using the −1 PRF stimulation pseudoknot of SARS-CoV (SARS-PK) to build a ligand-dependent −1 PRF stimulator. In particular, the extra stem of SARS-PK was replaced by an RNA aptamer of theophylline and designed to couple theophylline binding with the stimulation of −1 PRF. Conformational and functional analyses indicate that the engineered theophylline-responsive RNA functions as a mammalian riboswitch with robust theophylline-dependent −1 PRF stimulation activity in a stable human 293T cell-line. Thus, RNA–ligand interaction repertoire provided by in vitro selection becomes accessible to ligand-specific −1 PRF stimulator engineering using SARS-PK as the scaffold for synthetic biology application.