Cargando…
Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1
Transcription factors have been considered undruggable, but this paradigm has been recently challenged. DNA binding natural product mithramycin (MTM) is a potent antagonist of oncogenic transcription factor EWS–FLI1. Structural details of MTM recognition of DNA, including the FLI1 binding sequence G...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063001/ https://www.ncbi.nlm.nih.gov/pubmed/27587584 http://dx.doi.org/10.1093/nar/gkw761 |
_version_ | 1782459893777694720 |
---|---|
author | Hou, Caixia Weidenbach, Stevi Cano, Kristin E. Wang, Zhonghua Mitra, Prithiba Ivanov, Dmitri N. Rohr, Jürgen Tsodikov, Oleg V. |
author_facet | Hou, Caixia Weidenbach, Stevi Cano, Kristin E. Wang, Zhonghua Mitra, Prithiba Ivanov, Dmitri N. Rohr, Jürgen Tsodikov, Oleg V. |
author_sort | Hou, Caixia |
collection | PubMed |
description | Transcription factors have been considered undruggable, but this paradigm has been recently challenged. DNA binding natural product mithramycin (MTM) is a potent antagonist of oncogenic transcription factor EWS–FLI1. Structural details of MTM recognition of DNA, including the FLI1 binding sequence GGA(A/T), are needed to understand how MTM interferes with EWS–FLI1. We report a crystal structure of an MTM analogue MTM SA–Trp bound to a DNA oligomer containing a site GGCC, and two structures of a novel analogue MTM SA–Phe in complex with DNA. MTM SA–Phe is bound to sites AGGG and GGGT on one DNA, and to AGGG and GGGA(T) (a FLI1 binding site) on the other, revealing how MTM recognizes different DNA sequences. Unexpectedly, at sub-micromolar concentrations MTMs stabilize FLI1–DNA complex on GGAA repeats, which are critical for the oncogenic function of EWS–FLI1. We also directly demonstrate by nuclear magnetic resonance formation of a ternary FLI1–DNA–MTM complex on a single GGAA FLI1/MTM binding site. These biochemical and structural data and a new FLI1–DNA structure suggest that MTM binds the minor groove and perturbs FLI1 bound nearby in the major groove. This ternary complex model may lead to development of novel MTM analogues that selectively target EWS–FLI1 or other oncogenic transcription factors, as anti-cancer therapeutics. |
format | Online Article Text |
id | pubmed-5063001 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-50630012016-10-14 Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1 Hou, Caixia Weidenbach, Stevi Cano, Kristin E. Wang, Zhonghua Mitra, Prithiba Ivanov, Dmitri N. Rohr, Jürgen Tsodikov, Oleg V. Nucleic Acids Res Structural Biology Transcription factors have been considered undruggable, but this paradigm has been recently challenged. DNA binding natural product mithramycin (MTM) is a potent antagonist of oncogenic transcription factor EWS–FLI1. Structural details of MTM recognition of DNA, including the FLI1 binding sequence GGA(A/T), are needed to understand how MTM interferes with EWS–FLI1. We report a crystal structure of an MTM analogue MTM SA–Trp bound to a DNA oligomer containing a site GGCC, and two structures of a novel analogue MTM SA–Phe in complex with DNA. MTM SA–Phe is bound to sites AGGG and GGGT on one DNA, and to AGGG and GGGA(T) (a FLI1 binding site) on the other, revealing how MTM recognizes different DNA sequences. Unexpectedly, at sub-micromolar concentrations MTMs stabilize FLI1–DNA complex on GGAA repeats, which are critical for the oncogenic function of EWS–FLI1. We also directly demonstrate by nuclear magnetic resonance formation of a ternary FLI1–DNA–MTM complex on a single GGAA FLI1/MTM binding site. These biochemical and structural data and a new FLI1–DNA structure suggest that MTM binds the minor groove and perturbs FLI1 bound nearby in the major groove. This ternary complex model may lead to development of novel MTM analogues that selectively target EWS–FLI1 or other oncogenic transcription factors, as anti-cancer therapeutics. Oxford University Press 2016-10-14 2016-09-01 /pmc/articles/PMC5063001/ /pubmed/27587584 http://dx.doi.org/10.1093/nar/gkw761 Text en © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Structural Biology Hou, Caixia Weidenbach, Stevi Cano, Kristin E. Wang, Zhonghua Mitra, Prithiba Ivanov, Dmitri N. Rohr, Jürgen Tsodikov, Oleg V. Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1 |
title | Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1 |
title_full | Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1 |
title_fullStr | Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1 |
title_full_unstemmed | Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1 |
title_short | Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1 |
title_sort | structures of mithramycin analogues bound to dna and implications for targeting transcription factor fli1 |
topic | Structural Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063001/ https://www.ncbi.nlm.nih.gov/pubmed/27587584 http://dx.doi.org/10.1093/nar/gkw761 |
work_keys_str_mv | AT houcaixia structuresofmithramycinanaloguesboundtodnaandimplicationsfortargetingtranscriptionfactorfli1 AT weidenbachstevi structuresofmithramycinanaloguesboundtodnaandimplicationsfortargetingtranscriptionfactorfli1 AT canokristine structuresofmithramycinanaloguesboundtodnaandimplicationsfortargetingtranscriptionfactorfli1 AT wangzhonghua structuresofmithramycinanaloguesboundtodnaandimplicationsfortargetingtranscriptionfactorfli1 AT mitraprithiba structuresofmithramycinanaloguesboundtodnaandimplicationsfortargetingtranscriptionfactorfli1 AT ivanovdmitrin structuresofmithramycinanaloguesboundtodnaandimplicationsfortargetingtranscriptionfactorfli1 AT rohrjurgen structuresofmithramycinanaloguesboundtodnaandimplicationsfortargetingtranscriptionfactorfli1 AT tsodikovolegv structuresofmithramycinanaloguesboundtodnaandimplicationsfortargetingtranscriptionfactorfli1 |