Cargando…

Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae

The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogr...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, Trey K., Tremaine, Mary, Parreiras, Lucas S., Hebert, Alexander S., Myers, Kevin S., Higbee, Alan J., Sardi, Maria, McIlwain, Sean J., Ong, Irene M., Breuer, Rebecca J., Avanasi Narasimhan, Ragothaman, McGee, Mick A., Dickinson, Quinn, La Reau, Alex, Xie, Dan, Tian, Mingyuan, Reed, Jennifer L., Zhang, Yaoping, Coon, Joshua J., Hittinger, Chris Todd, Gasch, Audrey P., Landick, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065143/
https://www.ncbi.nlm.nih.gov/pubmed/27741250
http://dx.doi.org/10.1371/journal.pgen.1006372
_version_ 1782460275256983552
author Sato, Trey K.
Tremaine, Mary
Parreiras, Lucas S.
Hebert, Alexander S.
Myers, Kevin S.
Higbee, Alan J.
Sardi, Maria
McIlwain, Sean J.
Ong, Irene M.
Breuer, Rebecca J.
Avanasi Narasimhan, Ragothaman
McGee, Mick A.
Dickinson, Quinn
La Reau, Alex
Xie, Dan
Tian, Mingyuan
Reed, Jennifer L.
Zhang, Yaoping
Coon, Joshua J.
Hittinger, Chris Todd
Gasch, Audrey P.
Landick, Robert
author_facet Sato, Trey K.
Tremaine, Mary
Parreiras, Lucas S.
Hebert, Alexander S.
Myers, Kevin S.
Higbee, Alan J.
Sardi, Maria
McIlwain, Sean J.
Ong, Irene M.
Breuer, Rebecca J.
Avanasi Narasimhan, Ragothaman
McGee, Mick A.
Dickinson, Quinn
La Reau, Alex
Xie, Dan
Tian, Mingyuan
Reed, Jennifer L.
Zhang, Yaoping
Coon, Joshua J.
Hittinger, Chris Todd
Gasch, Audrey P.
Landick, Robert
author_sort Sato, Trey K.
collection PubMed
description The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.
format Online
Article
Text
id pubmed-5065143
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-50651432016-10-27 Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae Sato, Trey K. Tremaine, Mary Parreiras, Lucas S. Hebert, Alexander S. Myers, Kevin S. Higbee, Alan J. Sardi, Maria McIlwain, Sean J. Ong, Irene M. Breuer, Rebecca J. Avanasi Narasimhan, Ragothaman McGee, Mick A. Dickinson, Quinn La Reau, Alex Xie, Dan Tian, Mingyuan Reed, Jennifer L. Zhang, Yaoping Coon, Joshua J. Hittinger, Chris Todd Gasch, Audrey P. Landick, Robert PLoS Genet Research Article The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. Public Library of Science 2016-10-14 /pmc/articles/PMC5065143/ /pubmed/27741250 http://dx.doi.org/10.1371/journal.pgen.1006372 Text en © 2016 Sato et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Sato, Trey K.
Tremaine, Mary
Parreiras, Lucas S.
Hebert, Alexander S.
Myers, Kevin S.
Higbee, Alan J.
Sardi, Maria
McIlwain, Sean J.
Ong, Irene M.
Breuer, Rebecca J.
Avanasi Narasimhan, Ragothaman
McGee, Mick A.
Dickinson, Quinn
La Reau, Alex
Xie, Dan
Tian, Mingyuan
Reed, Jennifer L.
Zhang, Yaoping
Coon, Joshua J.
Hittinger, Chris Todd
Gasch, Audrey P.
Landick, Robert
Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae
title Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae
title_full Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae
title_fullStr Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae
title_full_unstemmed Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae
title_short Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae
title_sort directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by saccharomyces cerevisiae
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065143/
https://www.ncbi.nlm.nih.gov/pubmed/27741250
http://dx.doi.org/10.1371/journal.pgen.1006372
work_keys_str_mv AT satotreyk directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT tremainemary directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT parreiraslucass directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT hebertalexanders directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT myerskevins directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT higbeealanj directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT sardimaria directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT mcilwainseanj directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT ongirenem directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT breuerrebeccaj directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT avanasinarasimhanragothaman directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT mcgeemicka directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT dickinsonquinn directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT lareaualex directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT xiedan directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT tianmingyuan directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT reedjenniferl directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT zhangyaoping directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT coonjoshuaj directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT hittingerchristodd directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT gaschaudreyp directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae
AT landickrobert directedevolutionrevealsunexpectedepistaticinteractionsthataltermetabolicregulationandenableanaerobicxyloseusebysaccharomycescerevisiae